DRL-lunarlander / config.json
sathvik123's picture
Upload PPO LunarLander-v2 trained agent
e5e512d verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b50d56ce050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b50d56ce0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b50d56ce170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b50d56ce200>", "_build": "<function ActorCriticPolicy._build at 0x7b50d56ce290>", "forward": "<function ActorCriticPolicy.forward at 0x7b50d56ce320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b50d56ce3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b50d56ce440>", "_predict": "<function ActorCriticPolicy._predict at 0x7b50d56ce4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b50d56ce560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b50d56ce5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b50d56ce680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b50d5673cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736187360843385278, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABojFL0UcJe6OlsmOSyvNDhGuq86AuNTuAAAgD8AAIA/s5yvPcMpe7oYcCa4wJwCswtJg7oAlEE3AACAPwAAgD8A7OY84fiCuhVrOrhg6BizvWSbujozWTcAAIA/AACAP4ZFWT5Mw28/h5U8Pmshtb4NcRI+nK2YvQAAAAAAAAAATapsvS4qGD9sUjQ9KdmDvvpGkrz7j/A9AAAAAAAAAAAzXwW8Nr8TvGqFLLyfciA9xwBqPWa+Ab4AAIA/AACAP5MnBD72QCy6XujGNenxmjF46jI7S+L/tAAAgD8AAIA/jagCPuTfNj9I9Zo9XJ+avmfVpD0YLmA9AAAAAAAAAACt3TY+d6I+P8EFnruM36W+Wfb5PKDPhr0AAAAAAAAAAGaUdryUMI8+3PwOu28Ymr7KjU28gpO2OwAAAAAAAAAAwNPCPQ4Ihbzg0307CiHnPOAp6T0jB7a9AACAPwAAAAAGFhM+lAWbO/KB9b16VzC+AaB1PRTemD4AAIA/AAAAAAD95rzuRJA/2e6zvJx/2b6XR3O9STc8PAAAAAAAAAAAAFQTvRS+hbqKce86RK68s2ZvL7u5xQq6AACAPwAAgD9m8gg8pT8YPs6UxTzepVq+CotKvMb+5rwAAAAAAAAAAMAg7z1IFHQ/9UfdPEZ1nb6raQk9KTOwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCdw0XP7emMAWyUTaMCjAF0lEdAlHCrIgeRxXV9lChoBkdAcNprVvuPWGgHTasDaAhHQJRyEY1pCa91fZQoaAZHQGNxw3gk1MxoB03oA2gIR0CUdeWiUPhAdX2UKGgGR0Bs0Kv3ai9JaAdNKQJoCEdAlHkiaRZED3V9lChoBkdAb8SNyYG+smgHTZQCaAhHQJR+MLw4KhN1fZQoaAZHQGGWUdaMaS9oB03oA2gIR0CUfuIFeOXFdX2UKGgGR0Bw+6V1Oj7AaAdNswFoCEdAlH8kihWYGHV9lChoBkdAbF7o0Q9RrWgHTY8DaAhHQJSDrSv1UVB1fZQoaAZHQHAbp5JK8L9oB02aAWgIR0CUhMxWT5fudX2UKGgGR0BxlwYVIqb0aAdNWQJoCEdAlIaEpI+W4XV9lChoBkdAb3RSUkfLcWgHTXIBaAhHQJSHcIw/PgN1fZQoaAZHQHCeGtdRiw1oB02UAmgIR0CUiJeWfK6ndX2UKGgGR0BtNQz544ZNaAdN2AFoCEdAlIjE8aGYbHV9lChoBkdAY5O/Y8Md92gHTegDaAhHQJSJB2OhkAh1fZQoaAZHQHI51hw2l2xoB02AAWgIR0CUinS00FbFdX2UKGgGR0Bw7BwhnrY5aAdN1AFoCEdAlIrNFa0Qb3V9lChoBkdAcbl2xptaZGgHTYwBaAhHQJSRgYQ8OkN1fZQoaAZHQGvW3K8tf5VoB00vA2gIR0CUmDKIznA7dX2UKGgGR0BuiGXgLqlhaAdNGwJoCEdAlJiCROk+HXV9lChoBkdAbrDbcoH9nGgHTT8BaAhHQJSug4cWCVd1fZQoaAZHQG3GsibDuShoB02UAWgIR0CUr1xrSE13dX2UKGgGR0BjKMn5SFXaaAdN6ANoCEdAlK+zKoybhHV9lChoBkdAcEeZl4C6pmgHTYwDaAhHQJSvyx7iQ1d1fZQoaAZHQHFiE8ifQKNoB02LAWgIR0CUsHpRGc4HdX2UKGgGR0Bvi2wgTyrgaAdN2wFoCEdAlLNogmqo63V9lChoBkdAcBynHNorWmgHTbYBaAhHQJSz97Vrhzh1fZQoaAZHQHCO8QAdXDFoB004AmgIR0CUs/LG7z06dX2UKGgGR0AW2+BYmsvJaAdL9GgIR0CUtptZmqYJdX2UKGgGR0BxAFTAFgUlaAdNdwJoCEdAlLcmXgLqlnV9lChoBkdAb+nNKRMewWgHTTIBaAhHQJS6M6DGtIV1fZQoaAZHQGASb7TDwYtoB03oA2gIR0CUu7Vy3kPudX2UKGgGR0BwDg+MZP2xaAdNoANoCEdAlLzrVz6rNnV9lChoBkdAcXDHi3ocJmgHTUkDaAhHQJS9MhllK9R1fZQoaAZHQHML6hHskY5oB00jAWgIR0CUvtaWHDaXdX2UKGgGR0BxfPxRVIZqaAdNxgFoCEdAlMI5Ec81XXV9lChoBkdAcGIwFkhA4WgHTfgBaAhHQJTDSuIRAbB1fZQoaAZHQHEMx46fapRoB02EA2gIR0CUxALSeAd5dX2UKGgGR0Bx7tiqhlDnaAdNAgJoCEdAlMQA5imVJXV9lChoBkdAckKXQdCE6GgHTU8BaAhHQJTEUqvvBrN1fZQoaAZHQHCTJ8BuGbloB01RAWgIR0CUxPi/wiJPdX2UKGgGR0Bv/O2kSElFaAdNvgFoCEdAlMT0ep4r0HV9lChoBkdAbVNddE9dNWgHTb0BaAhHQJTFUD1XeWR1fZQoaAZHQG0yQZXMhX9oB01mAWgIR0CUyDoXKr7wdX2UKGgGR0ByEjUExIrfaAdNagFoCEdAlMsRXXAdn3V9lChoBkdAcXODf3vhImgHTYkBaAhHQJTMCJoCdSV1fZQoaAZHQHFC5L/S6UdoB02oA2gIR0CUzKq6vq1PdX2UKGgGR0BytjXBguyvaAdNAgNoCEdAlM0oaUA1enV9lChoBkdAM+D3Ehq0t2gHS/toCEdAlM5uIEbHZXV9lChoBkdAcS5V2A5Jb2gHTaABaAhHQJTO1N7Bwdd1fZQoaAZHQG4mCuuA7PpoB01TAWgIR0CUz9ZeRgZ1dX2UKGgGR0BvBrM/yGzsaAdNRgFoCEdAlM/w22oegnV9lChoBkdAb/QjVQQ+U2gHTRQCaAhHQJTQevnr6cl1fZQoaAZHQG/bUBfa6BloB019AWgIR0CU0uQO4G2UdX2UKGgGR0Bid3bEgntwaAdN6ANoCEdAlNP/4ubqhXV9lChoBkdAcDrGgBcRlGgHTd4BaAhHQJTqTAP/aQF1fZQoaAZHQHAaOevpyIZoB00GAmgIR0CU66eIVM24dX2UKGgGR0BxjI2bXpW4aAdNlwFoCEdAlOxdLg4wRHV9lChoBkdAcTb/qxC6YmgHTU0CaAhHQJTs6rZJ04l1fZQoaAZHQGyhfu1F6RhoB01bAWgIR0CU7RnKGL1mdX2UKGgGR0BuBM8gZCOWaAdNQAFoCEdAlO2iVSn+AHV9lChoBkdAcL2NcnmaIGgHTREBaAhHQJTvdDzAeq91fZQoaAZHQHDCBdIGyHFoB02CAWgIR0CU747gsK9gdX2UKGgGR0BuAI8B+4LDaAdNZQFoCEdAlO+Li6xxDXV9lChoBkdAcl/WJaaCtmgHTUcBaAhHQJTvicf/3nJ1fZQoaAZHQHIHB64UeuFoB01xAWgIR0CU8SJEpiI+dX2UKGgGR0Bx4YvYe1a4aAdNaQFoCEdAlPHNTtLL6nV9lChoBkdAcZU9P1tfomgHTZwBaAhHQJTzdw84gih1fZQoaAZHQGw3xc/t6X1oB00hAWgIR0CU9jpvP1L8dX2UKGgGR0BxWlw71ZkkaAdNFQNoCEdAlPaCCjDbanV9lChoBkdAcaK+1jRUm2gHTZwBaAhHQJT2o7GNrCZ1fZQoaAZHQHCKkQCjk+5oB00gAWgIR0CU9tD1GsmwdX2UKGgGR0BwMt56dDpkaAdNMAFoCEdAlPf9P1tfonV9lChoBkdAcZA+5vtMPGgHTTcBaAhHQJT4F6HCXQd1fZQoaAZHQHC7S75Ec81oB002AWgIR0CU+KhGH58CdX2UKGgGR0Bwip2Qnx8VaAdNLAFoCEdAlPoQtWdVenV9lChoBkdAcUrNwBHTZ2gHTVABaAhHQJT7REgGKQ91fZQoaAZHQHFmo593KSxoB01pAWgIR0CU/AkVN5+pdX2UKGgGR0BxgS0jTrmhaAdNUQFoCEdAlP0OuvECNnV9lChoBkdAbnn3Gn4wiGgHTQ8CaAhHQJT9WiXY1511fZQoaAZHQHB+DUmUnohoB00xAWgIR0CU/kxHoX9BdX2UKGgGR0Brqbot+TePaAdNegFoCEdAlP8ckt29tnV9lChoBkdAboeSrYGt62gHTSYBaAhHQJUAwug6EJ11fZQoaAZHQHKRTC1qnFZoB00BAmgIR0CVAVU9ZA6ddX2UKGgGR0BtrsAWBSUDaAdNVwFoCEdAlQJtShrWRXV9lChoBkdAb9/teD3/P2gHTXIBaAhHQJUDJBzFMqV1fZQoaAZHQHIN2dqcmShoB00iAWgIR0CVBChgE2YOdX2UKGgGR0BwiZOmBOHnaAdNYwFoCEdAlQR0Ouq3mXV9lChoBkdAb439gF5fMWgHTYwBaAhHQJUEovYe1a51fZQoaAZHQHAGnLvCuU5oB01tAWgIR0CVBVdLxqfwdX2UKGgGR0BwepfBvaUSaAdNggFoCEdAlQVoQWepXXV9lChoBkdARpjG7z06HWgHTQUBaAhHQJUGFjTa0yB1fZQoaAZHQHERDhky1u1oB01IA2gIR0CVBlpkPMB7dX2UKGgGR0BwZDDJlrdnaAdNHAFoCEdAlQcAiJO32HV9lChoBkdAbpNfCyhSL2gHTWQBaAhHQJUICN1hb4d1fZQoaAZHQG6vQj2SMcZoB02zAWgIR0CVCewfyPMjdX2UKGgGR0Bxnju6VdHEaAdNJwFoCEdAlQrg3tKIznV9lChoBkdAbju3974SH2gHTR8BaAhHQJULTEvTPSl1fZQoaAZHQG7xtvfj0cxoB01sAWgIR0CVC/w+MZP3dX2UKGgGR0BwPKZF5OafaAdNiAFoCEdAlQwhVAAyVXV9lChoBkdAV/PcRDkU9WgHS7loCEdAlQ00y57PZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}