{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b50d5673cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736188918315971135, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCq0727F3Q/Iv9jvS3e174C/Pi8tXp/PQAAAAAAAAAAzaDcu87HjLy7Yzw8Gy6AOsOXBL7mZ0w7AACAPwAAgD9mCOq8iEfAvCZuszwMV4w9kH/7PGRnmrsAAIA/AACAPzPfmjuuLZu6kmCMtjxX7LD20EU5Pr2kNQAAgD8AAIA/LfOgPifckz+HeoA+MK+zvmj/Ej/aqC28AAAAAAAAAAAzd+q8BWXGuwqtkbvGcbY8oA4SPROxmL0AAIA/AACAPwCdI71PCFY9ts/2PR0Uhb4yETY8G78AOwAAAAAAAAAAM8SGPe9m0z7n9Jm98jvFvsU2lLs1wfO8AAAAAAAAAACzq/m9JOnZPr56Ez7qVa6+NnRDuzOFCT0AAAAAAAAAADPX0zuPLkK6LrHbOkD2ADVKJwG6E2//uQAAgD8AAIA/zS+BPNl6uz9CBvs9KvFYPbFhobx0pBs8AAAAAAAAAABtPQG+rGX4Pk3NDD5zh66+8U23vOr5JT4AAAAAAAAAANY9T76XUzI/iVm7PWnzqb4vIqS9gBsOPgAAAAAAAAAAM8B3PQ/9MrwL5/K8x0nWve+ymTwWDI4+AACAPwAAgD9AKnQ+UKhTP+Kmgb7chda+lGvSPehcEL4AAAAAAAAAAM3IFj4+ouk+s35lvkDHqr7BR6E7SpCnvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8wM2eg+QmMAWyUS/eMAXSUR0Cp0PELx7RfdX2UKGgGR0BR9tPtUn5SaAdLx2gIR0Cp0XaVMVUNdX2UKGgGR0ByfVnHvMKUaAdNIwFoCEdAqdGiHoHLR3V9lChoBkdAcG+eKKpDNWgHS/1oCEdAqdGz0g8r7XV9lChoBkdAcPUGp++dsmgHTQ8BaAhHQKnRz9ph4MZ1fZQoaAZHQHA3osRQJoloB00ZAWgIR0Cp0ezlDF6zdX2UKGgGR0BTQevUz9CNaAdL1WgIR0Cp0urRSgoPdX2UKGgGR0Bwl/BInSfEaAdNAgFoCEdAqdMC8xsVL3V9lChoBkdAcdGLB9Cu2mgHTSwBaAhHQKnTIKm8/Ux1fZQoaAZHQHGbZFkQPI5oB0vlaAhHQKnTPCHh0hh1fZQoaAZHQHGFMsYl6Z9oB00SAWgIR0Cp00aciGFjdX2UKGgGR0By3bW/ag27aAdL4mgIR0Cp04cs189fdX2UKGgGR0BwTdd5Y5ktaAdL9mgIR0Cp05MURFqjdX2UKGgGR0BxGs7IT4+KaAdL82gIR0Cp05vppvgndX2UKGgGR0BwhOy/sVtXaAdL+mgIR0Cp0+NZeRgadX2UKGgGR0BwyQnRb8m8aAdL+WgIR0Cp0/xAjY7JdX2UKGgGR0Bw7B61LJ0XaAdL7WgIR0Cp1GCYsunNdX2UKGgGR0BxKRRtP558aAdL4GgIR0Cp1HeHi3ocdX2UKGgGR0By2WvB7/n4aAdL/GgIR0Cp1Lp8F6iTdX2UKGgGR0Bw2pMyrPt2aAdL7mgIR0Cp1N79AHE/dX2UKGgGR0BwXRRWLgn/aAdNGQFoCEdAqdVFN+LFXXV9lChoBkdAcgFeJHiFTWgHTaUBaAhHQKnVQ70WdmR1fZQoaAZHQG/VYCIUJv5oB0voaAhHQKnV1xZMcp91fZQoaAZHQHBdxOk+HJtoB0vXaAhHQKnV2i1RceN1fZQoaAZHQHJo53gUDdRoB0v4aAhHQKnWOpkwvg51fZQoaAZHQG+5pHqeK9BoB00SAWgIR0Cp1kolUp/gdX2UKGgGR0Bz03pt78ekaAdL72gIR0Cp1mqGlANYdX2UKGgGR0Bxb2p3os7NaAdL32gIR0Cp1pUTURWcdX2UKGgGR0Byt13OfNA1aAdL3mgIR0Cp1qqaoddWdX2UKGgGR0By6x+2E0zkaAdNKgFoCEdAqdbBi/fwZ3V9lChoBkdAcHHw84gieWgHTQoBaAhHQKnWxqcmShd1fZQoaAZHQHGjOhPCVKRoB00dAWgIR0Cp1wD+JgstdX2UKGgGR0BxXndsSCe3aAdL7WgIR0Cp12ObI91VdX2UKGgGR0By7l3C9AX3aAdNDQFoCEdAqdfOzposZ3V9lChoBkdAbz2MUh3aBmgHS+ZoCEdAqdfYmG/N7nV9lChoBkdAb+oPkJa7mWgHTQEBaAhHQKnYDdiUgSx1fZQoaAZHQG+yizcAR05oB0v5aAhHQKnYoGt6ol51fZQoaAZHQHIXRri2lVNoB00uAWgIR0Cp43xFiKBNdX2UKGgGR0BwDExXXAdoaAdL/2gIR0Cp44PL5h0AdX2UKGgGR0BzB5JAdGRWaAdL62gIR0Cp46X668QJdX2UKGgGR0BzxHMTviLmaAdNDwFoCEdAqeO5FocrAnV9lChoBkdAcCkH4Glhw2gHS/NoCEdAqePSlBQem3V9lChoBkdAcw4oR7JGOWgHS9toCEdAqePpLZi/f3V9lChoBkdAcewrzXjEN2gHS/NoCEdAqePy/Efkm3V9lChoBkdAbOBtk4FRpGgHS+xoCEdAqeQxnHvMKXV9lChoBkdAcRxmnO0LMWgHS/5oCEdAqeQ7EtNBW3V9lChoBkdAcLaM7U5MlGgHS+hoCEdAqeRp3/xUenV9lChoBkdAbtusNDtw72gHTRkBaAhHQKnku8jiXIF1fZQoaAZHQG7iL4Fiay9oB0v1aAhHQKnk2zw+dLB1fZQoaAZHQHMTM5OrQw9oB0vxaAhHQKnlFkrf+CN1fZQoaAZHQHKcmE4//vRoB0v0aAhHQKnlJ2ovSMN1fZQoaAZHQHF4CdFvybxoB00tAWgIR0Cp5gdD6WPcdX2UKGgGR0BxSm6NEPUbaAdNJAFoCEdAqeZrho/RmnV9lChoBkdAT9K5sj3VTmgHS7ZoCEdAqeZxrgwXZXV9lChoBkdAcUuAy2x6fWgHS+ZoCEdAqeZ1Sn+AE3V9lChoBkdAcTQYPXkHU2gHTQMBaAhHQKnmtJPIn0F1fZQoaAZHQHNLxnrY5DJoB00cAWgIR0Cp5v5J9RaYdX2UKGgGR0BxbW6kIomYaAdNAQFoCEdAqecMrupjt3V9lChoBkdAcIQ7UXpGF2gHTQcBaAhHQKnnCmVJL/V1fZQoaAZHQHGcszdk8RtoB00tAWgIR0Cp52avJRwZdX2UKGgGR0BxcWx9oexOaAdNFwFoCEdAqeeZmZmZmnV9lChoBkdAcxgs7MgU12gHS/BoCEdAqeewyXUpeHV9lChoBkdAcWMC9AX2umgHTT8BaAhHQKnn0ydFvyd1fZQoaAZHQHIbXAuZkTZoB00vAWgIR0Cp6CAfMfRvdX2UKGgGR0BxyzZWaMJhaAdL+mgIR0Cp6C/mcOLBdX2UKGgGR0Bw+7iEQGwBaAdL+GgIR0Cp6Du4gA6udX2UKGgGR0BxqksYl6Z6aAdNIgFoCEdAqehltIkJKXV9lChoBkdAcGmX7Lt/nWgHS/loCEdAqekMmdAgPnV9lChoBkdAb9K11GLDRGgHS/9oCEdAqemGPgeijHV9lChoBkdAbV1UdaMaTGgHTQgBaAhHQKnpo7HyVfN1fZQoaAZHQFWZhoM8YANoB0vlaAhHQKnpvaQmu1Z1fZQoaAZHQHGV0gKWszVoB00ZAWgIR0Cp6dX4sVcmdX2UKGgGR0ByOO7iADq4aAdNDAFoCEdAqen3WFvhqHV9lChoBkdAcRS0u14PgGgHS/RoCEdAqen+1QZXMnV9lChoBkdAcSImlImPYGgHS+JoCEdAqeonPHDJl3V9lChoBkdAcDlenhsImmgHTQYBaAhHQKnqOQTVUdd1fZQoaAZHQHK7rIkqto1oB00PAWgIR0Cp6uouf29MdX2UKGgGR0BwOpJAdGRWaAdL5mgIR0Cp6wYrSVnmdX2UKGgGR0BxSfZkCmuUaAdL/WgIR0Cp60HU2DQJdX2UKGgGR0BwflQSBbwCaAdL+WgIR0Cp61LFfiPydX2UKGgGR0BylJKxs2vTaAdNJwFoCEdAqetV7v5P/XV9lChoBkdAcZQHvttygmgHTTYBaAhHQKnroOBlMAZ1fZQoaAZHQHMO/+KjzqdoB00LAWgIR0Cp67UvwmVrdX2UKGgGR0BytJ37k4m1aAdL/mgIR0Cp7Dm65Gz9dX2UKGgGR0ByFpG5MDfWaAdL9GgIR0Cp7IrCFbmmdX2UKGgGR0BxGl9XtBv8aAdNAAFoCEdAqezJJul41XV9lChoBkdAb0NZJ04io2gHS/poCEdAqe0Aq3EycnV9lChoBkdAcyBf2K2rn2gHS+1oCEdAqe0H+qBEr3V9lChoBkdAcxnXHR1HOWgHTQoBaAhHQKntF0Cih391fZQoaAZHQHLKGN3np0RoB00WAWgIR0Cp7SMWfseGdX2UKGgGR0Byhc/Y8Md+aAdL/WgIR0Cp7UU5+6RRdX2UKGgGR0Bxqbw8W9DhaAdL6WgIR0Cp7apVjqfOdX2UKGgGR0ByzprnDBM0aAdNPwFoCEdAqe3KlchTwXV9lChoBkdAcWwOcDr7f2gHS/FoCEdAqe4nEVFhHHV9lChoBkdAc2d6TW5H3GgHS+9oCEdAqe4kM7U5MnV9lChoBkdAcpS7kn1FpmgHTQ0BaAhHQKnuNpeu3c51fZQoaAZHQHB3zjebd8BoB00LAWgIR0Cp7mQUQCjldX2UKGgGR0Bvl2LrHEMtaAdL8mgIR0Cp7ouzY287dX2UKGgGR0ByoxqoIfKZaAdNCAFoCEdAqe6z9CNS63V9lChoBkdAc2sC8vmHQGgHS+NoCEdAqe852hZha3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}