File size: 3,769 Bytes
6e609aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: mit
base_model: microsoft/phi-2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: phi2-filter2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: satpalsr/phi2-filter2
hf_use_auth_token: true

datasets:
  - path: satpalsr/translation-filter
    type: completion

dataset_prepared_path:
val_set_size: 0.01
output_dir: ./phi-sft-out2

sequence_len: 2048
sample_packing: false  # currently unsupported
pad_to_sequence_len:

adapter:
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embd
  - lm_head

wandb_project: phi2transfilter
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 4
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false

warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
  pad_token: "<|endoftext|>"
```

</details><br>

# phi2-filter2

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1944

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5676        | 0.01  | 1    | 2.5391          |
| 2.4364        | 0.25  | 29   | 2.4042          |
| 1.9523        | 0.5   | 58   | 1.8580          |
| 1.1137        | 0.75  | 87   | 0.9535          |
| 0.5107        | 1.0   | 116  | 0.4195          |
| 0.4588        | 1.25  | 145  | 0.2877          |
| 0.2876        | 1.5   | 174  | 0.2462          |
| 0.2959        | 1.75  | 203  | 0.2264          |
| 0.2197        | 2.0   | 232  | 0.2114          |
| 0.3045        | 2.25  | 261  | 0.2052          |
| 0.2726        | 2.5   | 290  | 0.2022          |
| 0.3046        | 2.75  | 319  | 0.1975          |
| 0.3316        | 3.0   | 348  | 0.1954          |
| 0.2223        | 3.25  | 377  | 0.1950          |
| 0.2609        | 3.5   | 406  | 0.1946          |
| 0.2739        | 3.75  | 435  | 0.1945          |
| 0.2703        | 4.0   | 464  | 0.1944          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0