File size: 11,796 Bytes
076397c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: bart-large-cnn-prompt_generation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-prompt_generation

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5934
- Actual score: 0.8766
- Predction score: 1.3535
- Score difference: -0.4769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Actual score | Predction score | Score difference |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:---------------:|:----------------:|
| No log        | 1.0   | 15   | 3.6224          | 0.8766       | -0.4105         | 1.2871           |
| No log        | 2.0   | 30   | 3.5086          | 0.8766       | -0.2477         | 1.1243           |
| No log        | 3.0   | 45   | 3.3524          | 0.8766       | -0.3119         | 1.1886           |
| No log        | 4.0   | 60   | 3.2496          | 0.8766       | -0.1139         | 0.9905           |
| No log        | 5.0   | 75   | 3.1300          | 0.8766       | -0.3163         | 1.1929           |
| No log        | 6.0   | 90   | 3.0445          | 0.8766       | -0.4738         | 1.3504           |
| No log        | 7.0   | 105  | 2.9855          | 0.8766       | -0.5561         | 1.4327           |
| No log        | 8.0   | 120  | 2.9429          | 0.8766       | -0.6262         | 1.5028           |
| No log        | 9.0   | 135  | 2.9103          | 0.8766       | -0.4633         | 1.3399           |
| No log        | 10.0  | 150  | 2.8818          | 0.8766       | -0.5404         | 1.4170           |
| No log        | 11.0  | 165  | 2.8567          | 0.8766       | -0.7534         | 1.6300           |
| No log        | 12.0  | 180  | 2.8327          | 0.8766       | -0.7283         | 1.6049           |
| No log        | 13.0  | 195  | 2.8114          | 0.8766       | -0.5976         | 1.4742           |
| No log        | 14.0  | 210  | 2.7917          | 0.8766       | -0.7693         | 1.6460           |
| No log        | 15.0  | 225  | 2.7749          | 0.8766       | -0.5831         | 1.4597           |
| No log        | 16.0  | 240  | 2.7596          | 0.8766       | -0.5963         | 1.4729           |
| No log        | 17.0  | 255  | 2.7458          | 0.8766       | -0.5232         | 1.3998           |
| No log        | 18.0  | 270  | 2.7329          | 0.8766       | -0.1795         | 1.0562           |
| No log        | 19.0  | 285  | 2.7211          | 0.8766       | -0.2189         | 1.0955           |
| No log        | 20.0  | 300  | 2.7111          | 0.8766       | -0.3411         | 1.2177           |
| No log        | 21.0  | 315  | 2.7022          | 0.8766       | -0.3058         | 1.1824           |
| No log        | 22.0  | 330  | 2.6936          | 0.8766       | -0.3270         | 1.2036           |
| No log        | 23.0  | 345  | 2.6853          | 0.8766       | -0.1728         | 1.0494           |
| No log        | 24.0  | 360  | 2.6771          | 0.8766       | -0.2413         | 1.1179           |
| No log        | 25.0  | 375  | 2.6700          | 0.8766       | 0.0077          | 0.8689           |
| No log        | 26.0  | 390  | 2.6641          | 0.8766       | -0.0744         | 0.9510           |
| No log        | 27.0  | 405  | 2.6589          | 0.8766       | 0.0078          | 0.8689           |
| No log        | 28.0  | 420  | 2.6540          | 0.8766       | 0.0711          | 0.8055           |
| No log        | 29.0  | 435  | 2.6493          | 0.8766       | 0.2289          | 0.6477           |
| No log        | 30.0  | 450  | 2.6443          | 0.8766       | 0.1096          | 0.7670           |
| No log        | 31.0  | 465  | 2.6393          | 0.8766       | 0.1335          | 0.7431           |
| No log        | 32.0  | 480  | 2.6355          | 0.8766       | 0.3491          | 0.5275           |
| No log        | 33.0  | 495  | 2.6321          | 0.8766       | 0.4268          | 0.4498           |
| 2.6272        | 34.0  | 510  | 2.6288          | 0.8766       | 0.3806          | 0.4960           |
| 2.6272        | 35.0  | 525  | 2.6258          | 0.8766       | 0.8496          | 0.0271           |
| 2.6272        | 36.0  | 540  | 2.6231          | 0.8766       | 0.6446          | 0.2321           |
| 2.6272        | 37.0  | 555  | 2.6204          | 0.8766       | 0.6268          | 0.2498           |
| 2.6272        | 38.0  | 570  | 2.6176          | 0.8766       | 0.8588          | 0.0178           |
| 2.6272        | 39.0  | 585  | 2.6159          | 0.8766       | 0.9990          | -0.1224          |
| 2.6272        | 40.0  | 600  | 2.6132          | 0.8766       | 1.0628          | -0.1862          |
| 2.6272        | 41.0  | 615  | 2.6111          | 0.8766       | 0.9146          | -0.0380          |
| 2.6272        | 42.0  | 630  | 2.6092          | 0.8766       | 1.0457          | -0.1691          |
| 2.6272        | 43.0  | 645  | 2.6078          | 0.8766       | 0.9640          | -0.0874          |
| 2.6272        | 44.0  | 660  | 2.6059          | 0.8766       | 1.0378          | -0.1612          |
| 2.6272        | 45.0  | 675  | 2.6047          | 0.8766       | 1.0599          | -0.1833          |
| 2.6272        | 46.0  | 690  | 2.6034          | 0.8766       | 1.1746          | -0.2980          |
| 2.6272        | 47.0  | 705  | 2.6019          | 0.8766       | 1.1497          | -0.2730          |
| 2.6272        | 48.0  | 720  | 2.6002          | 0.8766       | 1.2987          | -0.4221          |
| 2.6272        | 49.0  | 735  | 2.5988          | 0.8766       | 1.2149          | -0.3383          |
| 2.6272        | 50.0  | 750  | 2.5982          | 0.8766       | 1.2456          | -0.3690          |
| 2.6272        | 51.0  | 765  | 2.5973          | 0.8766       | 1.2476          | -0.3709          |
| 2.6272        | 52.0  | 780  | 2.5958          | 0.8766       | 1.2934          | -0.4168          |
| 2.6272        | 53.0  | 795  | 2.5948          | 0.8766       | 1.2370          | -0.3604          |
| 2.6272        | 54.0  | 810  | 2.5937          | 0.8766       | 1.2163          | -0.3397          |
| 2.6272        | 55.0  | 825  | 2.5926          | 0.8766       | 1.2636          | -0.3869          |
| 2.6272        | 56.0  | 840  | 2.5923          | 0.8766       | 1.3040          | -0.4273          |
| 2.6272        | 57.0  | 855  | 2.5921          | 0.8766       | 1.3694          | -0.4928          |
| 2.6272        | 58.0  | 870  | 2.5916          | 0.8766       | 1.1951          | -0.3185          |
| 2.6272        | 59.0  | 885  | 2.5916          | 0.8766       | 1.3291          | -0.4525          |
| 2.6272        | 60.0  | 900  | 2.5914          | 0.8766       | 1.3288          | -0.4521          |
| 2.6272        | 61.0  | 915  | 2.5914          | 0.8766       | 1.3867          | -0.5101          |
| 2.6272        | 62.0  | 930  | 2.5916          | 0.8766       | 1.4165          | -0.5399          |
| 2.6272        | 63.0  | 945  | 2.5915          | 0.8766       | 1.4103          | -0.5337          |
| 2.6272        | 64.0  | 960  | 2.5910          | 0.8766       | 1.3960          | -0.5194          |
| 2.6272        | 65.0  | 975  | 2.5908          | 0.8766       | 1.3134          | -0.4368          |
| 2.6272        | 66.0  | 990  | 2.5903          | 0.8766       | 1.3638          | -0.4872          |
| 1.9897        | 67.0  | 1005 | 2.5900          | 0.8766       | 1.3875          | -0.5109          |
| 1.9897        | 68.0  | 1020 | 2.5901          | 0.8766       | 1.2404          | -0.3637          |
| 1.9897        | 69.0  | 1035 | 2.5900          | 0.8766       | 1.4162          | -0.5396          |
| 1.9897        | 70.0  | 1050 | 2.5899          | 0.8766       | 1.4048          | -0.5281          |
| 1.9897        | 71.0  | 1065 | 2.5900          | 0.8766       | 1.3967          | -0.5201          |
| 1.9897        | 72.0  | 1080 | 2.5900          | 0.8766       | 1.4208          | -0.5442          |
| 1.9897        | 73.0  | 1095 | 2.5903          | 0.8766       | 1.4418          | -0.5651          |
| 1.9897        | 74.0  | 1110 | 2.5903          | 0.8766       | 1.4656          | -0.5890          |
| 1.9897        | 75.0  | 1125 | 2.5905          | 0.8766       | 1.4504          | -0.5738          |
| 1.9897        | 76.0  | 1140 | 2.5910          | 0.8766       | 1.3669          | -0.4903          |
| 1.9897        | 77.0  | 1155 | 2.5912          | 0.8766       | 1.3362          | -0.4595          |
| 1.9897        | 78.0  | 1170 | 2.5917          | 0.8766       | 1.3196          | -0.4430          |
| 1.9897        | 79.0  | 1185 | 2.5918          | 0.8766       | 1.3537          | -0.4770          |
| 1.9897        | 80.0  | 1200 | 2.5921          | 0.8766       | 1.3136          | -0.4370          |
| 1.9897        | 81.0  | 1215 | 2.5923          | 0.8766       | 1.3806          | -0.5039          |
| 1.9897        | 82.0  | 1230 | 2.5926          | 0.8766       | 1.3900          | -0.5134          |
| 1.9897        | 83.0  | 1245 | 2.5924          | 0.8766       | 1.3907          | -0.5141          |
| 1.9897        | 84.0  | 1260 | 2.5924          | 0.8766       | 1.3785          | -0.5019          |
| 1.9897        | 85.0  | 1275 | 2.5926          | 0.8766       | 1.4009          | -0.5243          |
| 1.9897        | 86.0  | 1290 | 2.5928          | 0.8766       | 1.4108          | -0.5342          |
| 1.9897        | 87.0  | 1305 | 2.5929          | 0.8766       | 1.3947          | -0.5180          |
| 1.9897        | 88.0  | 1320 | 2.5929          | 0.8766       | 1.3845          | -0.5078          |
| 1.9897        | 89.0  | 1335 | 2.5928          | 0.8766       | 1.4045          | -0.5279          |
| 1.9897        | 90.0  | 1350 | 2.5929          | 0.8766       | 1.3804          | -0.5038          |
| 1.9897        | 91.0  | 1365 | 2.5931          | 0.8766       | 1.3962          | -0.5195          |
| 1.9897        | 92.0  | 1380 | 2.5931          | 0.8766       | 1.3801          | -0.5034          |
| 1.9897        | 93.0  | 1395 | 2.5932          | 0.8766       | 1.3664          | -0.4897          |
| 1.9897        | 94.0  | 1410 | 2.5933          | 0.8766       | 1.3716          | -0.4950          |
| 1.9897        | 95.0  | 1425 | 2.5933          | 0.8766       | 1.3935          | -0.5169          |
| 1.9897        | 96.0  | 1440 | 2.5933          | 0.8766       | 1.3676          | -0.4910          |
| 1.9897        | 97.0  | 1455 | 2.5934          | 0.8766       | 1.3914          | -0.5148          |
| 1.9897        | 98.0  | 1470 | 2.5933          | 0.8766       | 1.3912          | -0.5146          |
| 1.9897        | 99.0  | 1485 | 2.5934          | 0.8766       | 1.3930          | -0.5164          |
| 1.7966        | 100.0 | 1500 | 2.5934          | 0.8766       | 1.3535          | -0.4769          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1