File size: 2,270 Bytes
ea02dc7
 
 
 
 
 
 
 
 
 
 
ae62a1b
 
ea02dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a685f
 
ea02dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a7881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
tags:
- merge
- mergekit
- kaist-ai/mistral-orpo-beta
- NousResearch/Hermes-2-Pro-Mistral-7B
base_model:
- kaist-ai/mistral-orpo-beta
- NousResearch/Hermes-2-Pro-Mistral-7B
---

![](https://raw.githubusercontent.com/saucam/models/main/orpomis-prime.png)

# Orpomis-Prime-7B-dare

Orpomis-Prime-7B-dare is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit):
* [kaist-ai/mistral-orpo-beta](https://huggingface.co/kaist-ai/mistral-orpo-beta)
* [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)

## 🧩 Configuration

```yamlname: Orpomis-Prime-7B-dare
models:
  - model: kaist-ai/mistral-orpo-beta
    parameters:
      density: 0.5
      weight: 0.6
    # No parameters necessary for base model
  - model: NousResearch/Hermes-2-Pro-Mistral-7B
    parameters:
      density: 0.5
      weight: 0.4
merge_method: dare_ties
base_model: kaist-ai/mistral-orpo-beta
parameters:
  int8_mask: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "saucam/Orpomis-Prime-7B-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Sample Run

```
<|user|>
Beth bakes 4, or 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does each person consume?</s>


<|assistant|>
If Beth bakes 4, or 2 dozen batches of cookies in a week, then she bakes a total of 2 x 4 = 8 dozen cookies.

If these cookies are shared amongst 16 people equally, each person would consume 8 dozen cookies / 16 people = 0.5 dozen cookies.

Since there are 12 cookies in a dozen, each person would consume 0.5 dozen cookies * 12 cookies/dozen = 6 cookies.

So, each person consumes 6 cookies.
```