--- library_name: transformers tags: [] --- # gemma2-9b-sft base_model: gemma2_9b gemma2 27bにより生成したself instructデータ10kによりinstrution tuningを実施 ## Eval elyza-task-100 ## Use ``` model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" # GPU自動割り当て ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages_list = [ [ {"role": "user", "content": "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。"} ] ] prompts = [self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) for messages in messages_list] inputs = self.tokenizer(prompts, return_tensors="pt", padding=True).to(self.model.device) outputs = self.model.generate( **inputs, temperature=self.generate_configs["temperature"], max_new_tokens=self.generate_configs["max_new_tokens"], top_p=self.generate_configs["top_p"], top_k=self.generate_configs["top_k"], repetition_penalty=self.generate_configs["repetition_penalty"], pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, ) print(outputs) ```