File size: 1,897 Bytes
bbe8868
712f50f
 
 
bf0d518
 
eed3080
712f50f
 
 
975692f
9d43e47
 
 
 
 
 
 
 
bbe8868
712f50f
eed3080
 
712f50f
 
 
eed3080
712f50f
242cefc
 
 
 
 
 
 
 
 
712f50f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37398e
 
 
eed3080
 
 
242cefc
712f50f
 
 
 
eed3080
712f50f
9d43e47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: other
base_model: nvidia/segformer-b0-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-deprem-satellite
  results: []
widget:
- src: >-
    https://datasets-server.huggingface.co/assets/deprem-ml/deprem_satellite_semantic_whu_dataset/--/default/train/3/image/image.jpg
  example_title: Example 1
- src: >-
    https://datasets-server.huggingface.co/assets/deprem-ml/deprem_satellite_semantic_whu_dataset/--/default/train/9/image/image.jpg
  example_title: Example 2
datasets:
- deprem-ml/deprem_satellite_semantic_whu_dataset
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-deprem-satellite

This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the deprem-ml/deprem_satellite_semantic_whu_dataset dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0641
- eval_mean_iou: 0.9849
- eval_mean_accuracy: 0.9933
- eval_overall_accuracy: 0.9933
- eval_runtime: 94.2835
- eval_samples_per_second: 10.988
- eval_steps_per_second: 2.206
- epoch: 4.18
- step: 1980

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0