Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- unit1-ppo-LunarLander-v2.zip +2 -2
- unit1-ppo-LunarLander-v2/data +7 -7
- unit1-ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- unit1-ppo-LunarLander-v2/policy.pth +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 278.45 +/- 18.24
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26970ecdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26970ece50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26970ecee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26970ecf70>", "_build": "<function ActorCriticPolicy._build at 0x7f26970f2040>", "forward": "<function ActorCriticPolicy.forward at 0x7f26970f20d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26970f2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26970f21f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26970f2280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26970f2310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26970f23a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26970f2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26970efe40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678359367444183457, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaLWj44KKY/43dNPlN37b76c/Y+1tQOPwAAAAAAAAAAAGzZOwwBuD9GZxs8rza1vdGigj3qzzk+AAAAAAAAAAASOdK+tmeeP2SxLr/sgAK/6CN4vq05370AAAAAAAAAAAByhzyOfq4/EqbnPcLFRb5XgIq7MrEUPAAAAAAAAAAAxlYwvkHHxz9Q1/G+3daNvHwojLxKfAy+AAAAAAAAAABmoP497Ou0P1NKMj6Qrbm+s7DiPZGEMj4AAAAAAAAAAObrp73hNre6opC+u5dUUL1e8xS8A1o2vgAAAAAAAIA/FkXEPvDCXD91FRO+Kct8v4cLVT+h24+9AAAAAAAAAADNc7K8xECeP/D/573VcwG/1dvavK11jb0AAAAAAAAAAACVSz7df7I/pnwLPkYkw77wIxg/RlrhPgAAAAAAAAAARRXQvuhb7z2SQLE9adWFv2Yb171VVac+AAAAAAAAAABgYHk+lrUYP59Jkb31b/m+SZWzPjLcmD0AAAAAAAAAAO0nHT573Ic/gjz0PpzGO79wuPg8zS12PgAAAAAAAAAAmqERPYCkhj86G6Q9JnAXv066JT68jLI9AAAAAAAAAADzKE4+B6eFPxqXJT+MokC/dIOAPLLBGD4AAAAAAAAAACwfFr/bXMA9kYuavs6pkr/639W+htDZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI24e85epfXcCUhpRSlIwBbJRLkYwBdJRHQFLxIkJKJ2t1fZQoaAZoCWgPQwgfTfVk/rk4wJSGlFKUaBVLe2gWR0BS8dAX2ugZdX2UKGgGaAloD0MIrFRQUfU7KcCUhpRSlGgVS0loFkdAUvYknkT6BXV9lChoBmgJaA9DCPxSP28qgkRAlIaUUpRoFUuPaBZHQFL53BpHqeN1fZQoaAZoCWgPQwhSuYlampVTwJSGlFKUaBVLdWgWR0BS+pnL7oB8dX2UKGgGaAloD0MIcEG2LF+rNcCUhpRSlGgVS1doFkdAUvsxyn1nNHV9lChoBmgJaA9DCCnLEMe6vFDAlIaUUpRoFUuHaBZHQFL84bS7Xg91fZQoaAZoCWgPQwi9/iQ+d6BnwJSGlFKUaBVLcWgWR0BS/5qmCROldX2UKGgGaAloD0MIFi8WhshxR8CUhpRSlGgVS1loFkdAUwfdoFmnO3V9lChoBmgJaA9DCIIBhA8lCjTAlIaUUpRoFUtnaBZHQFMK4h2W6bx1fZQoaAZoCWgPQwhW0opvKAxdwJSGlFKUaBVLZ2gWR0BTC5F1B+nZdX2UKGgGaAloD0MIHOp3YWtoVsCUhpRSlGgVS2xoFkdAUxEE5hjOLXV9lChoBmgJaA9DCD3UtmEUW1bAlIaUUpRoFUtvaBZHQFMS31zySV51fZQoaAZoCWgPQwhb7zfacQZewJSGlFKUaBVLT2gWR0BTFPGdZq20dX2UKGgGaAloD0MIj46rkV0pR8CUhpRSlGgVTegDaBZHQFMX3QD3dsV1fZQoaAZoCWgPQwj0bFZ9ru4mQJSGlFKUaBVLoGgWR0BTG9BBzFMqdX2UKGgGaAloD0MICHdn7bbnT8CUhpRSlGgVS0loFkdAUxxCx/ustHV9lChoBmgJaA9DCEpenWNAbF3AlIaUUpRoFUucaBZHQFMkRZEDyOJ1fZQoaAZoCWgPQwgb17/rMzdKwJSGlFKUaBVLemgWR0BTJVuivgWKdX2UKGgGaAloD0MINPYlGw/SR8CUhpRSlGgVS2ZoFkdAUylHlOoHcHV9lChoBmgJaA9DCFTjpZvEiErAlIaUUpRoFUt2aBZHQFMpwKSgXdl1fZQoaAZoCWgPQwhzhXe5iEFPwJSGlFKUaBVLVmgWR0BTL1ZPl+3IdX2UKGgGaAloD0MIx4SYSyp9aMCUhpRSlGgVS3poFkdAUzA/LTx5LXV9lChoBmgJaA9DCIWxhSAHI0fAlIaUUpRoFUtRaBZHQFMyFUQ04zd1fZQoaAZoCWgPQwia6V4n9fhVwJSGlFKUaBVLa2gWR0BTNQ+IMz/IdX2UKGgGaAloD0MIz0nvG1+4VsCUhpRSlGgVS4doFkdAUzdnscABDHV9lChoBmgJaA9DCCKrWz0nWVLAlIaUUpRoFUtGaBZHQFM3Y7JW/8F1fZQoaAZoCWgPQwhJgnAFFIxUwJSGlFKUaBVLi2gWR0BTOw00m+j/dX2UKGgGaAloD0MIaCJseHr8XMCUhpRSlGgVS1toFkdAUz8EwFkhBHV9lChoBmgJaA9DCLMngc05iC5AlIaUUpRoFUtsaBZHQFM/L5hz/6x1fZQoaAZoCWgPQwi22y4010kUQJSGlFKUaBVLb2gWR0BTQkDuBtk4dX2UKGgGaAloD0MIQE0tW+tXMsCUhpRSlGgVS4loFkdAU0LwBo24u3V9lChoBmgJaA9DCGXkLOxphl/AlIaUUpRoFUtdaBZHQFNINo8IRiB1fZQoaAZoCWgPQwgs76oHzHJQwJSGlFKUaBVLRWgWR0BTS6F23azvdX2UKGgGaAloD0MIUWaDTLJqcMCUhpRSlGgVS5FoFkdAU0sWP91loXV9lChoBmgJaA9DCLk2VIzzQFPAlIaUUpRoFUtmaBZHQFNPaBqbjLl1fZQoaAZoCWgPQwh32hoRjPM5wJSGlFKUaBVLWmgWR0BTUL74zrNXdX2UKGgGaAloD0MI2V2gpEDyYMCUhpRSlGgVS4FoFkdAU1UG2TgVGnV9lChoBmgJaA9DCI+K/zuiBEPAlIaUUpRoFUtWaBZHQFNXQeV9nbt1fZQoaAZoCWgPQwhWC+wxkY9UwJSGlFKUaBVLamgWR0BTV8olUp/gdX2UKGgGaAloD0MIWcAEbt2DQ8CUhpRSlGgVS4RoFkdAU1rkvK2a2HV9lChoBmgJaA9DCCqOA6+WO1nAlIaUUpRoFUtjaBZHQFNcqQA+6iF1fZQoaAZoCWgPQwiF7pI4K7BNwJSGlFKUaBVLPmgWR0BTX/iLl3hXdX2UKGgGaAloD0MIgjgPJ7AKY8CUhpRSlGgVS4JoFkdAU2YibDuSfXV9lChoBmgJaA9DCE90XfjBzVXAlIaUUpRoFUt1aBZHQFNm9cbBGhF1fZQoaAZoCWgPQwil12ZjJVY9wJSGlFKUaBVLYmgWR0BTaBQzk6tDdX2UKGgGaAloD0MIxk/j3vxoV8CUhpRSlGgVS3FoFkdAU2mf029+PXV9lChoBmgJaA9DCGN+bmjKk1rAlIaUUpRoFUtvaBZHQFNpE74i5d51fZQoaAZoCWgPQwi4BUt1ATFUwJSGlFKUaBVLUmgWR0BTcGCdz4lAdX2UKGgGaAloD0MIQEtXsI3VUMCUhpRSlGgVS0RoFkdAU3F4rz5GjXV9lChoBmgJaA9DCILhXMMMzFLAlIaUUpRoFUuDaBZHQFNzr7O3UhF1fZQoaAZoCWgPQwiPq5FdaQ9HwJSGlFKUaBVLb2gWR0BTdeZTho/SdX2UKGgGaAloD0MIGjBI+rRIRMCUhpRSlGgVS1JoFkdAU3mw3YL9dnV9lChoBmgJaA9DCAddwqG3RVvAlIaUUpRoFUt7aBZHQFN5gvUSZjR1fZQoaAZoCWgPQwg6BI4EGlRVwJSGlFKUaBVLYGgWR0BTgFbA1vVFdX2UKGgGaAloD0MIVDcXf9sJRMCUhpRSlGgVS4doFkdAU4Lf/FR51XV9lChoBmgJaA9DCJmbb0T3KFPAlIaUUpRoFUtRaBZHQFOEeCTUy591fZQoaAZoCWgPQwjSpuoe2fg/wJSGlFKUaBVLfWgWR0BThJT/ACXAdX2UKGgGaAloD0MIclDCTNvHTcCUhpRSlGgVS1loFkdAU4kTWXkYGnV9lChoBmgJaA9DCB6ILNLEuVnAlIaUUpRoFUthaBZHQFON82Jiy6d1fZQoaAZoCWgPQwjMmII1znpVwJSGlFKUaBVLZWgWR0BTjuDFqBVddX2UKGgGaAloD0MIaoXpew0nYcCUhpRSlGgVS1FoFkdAU5KiRGMGYHV9lChoBmgJaA9DCCR+xRou/lPAlIaUUpRoFUuOaBZHQFOWcZccENh1fZQoaAZoCWgPQwho0NA/wTU1wJSGlFKUaBVLamgWR0BTmQ0fozN2dX2UKGgGaAloD0MIizOGOUE+VcCUhpRSlGgVS4hoFkdAU5rnLaEi+3V9lChoBmgJaA9DCOeMKO0NkkvAlIaUUpRoFUtaaBZHQFOc1/2Cdz51fZQoaAZoCWgPQwie7GZGP5hNwJSGlFKUaBVLdmgWR0BTpKgmJFb3dX2UKGgGaAloD0MIa5p3nKJ0ZMCUhpRSlGgVS41oFkdAU6nu8brC33V9lChoBmgJaA9DCDYhrTHodVnAlIaUUpRoFUuEaBZHQFOwgccU/Od1fZQoaAZoCWgPQwh9k6ZB0Zw3wJSGlFKUaBVLTGgWR0BTsHs9jgAIdX2UKGgGaAloD0MIuoEC7+SPTMCUhpRSlGgVS0poFkdAU7OqBEroXHV9lChoBmgJaA9DCAJjfQMT72TAlIaUUpRoFUtzaBZHQFO1z9CNS611fZQoaAZoCWgPQwhODp90Ii9MwJSGlFKUaBVLfGgWR0BTuCjxkNF0dX2UKGgGaAloD0MIA3tMpDSJQ8CUhpRSlGgVS25oFkdAU7l3qzJIUnV9lChoBmgJaA9DCCUgJuFCzhhAlIaUUpRoFUuSaBZHQFO/17pmmLt1fZQoaAZoCWgPQwhRpWYPtO9RwJSGlFKUaBVLXWgWR0BTw6s2eg+RdX2UKGgGaAloD0MINzl80onkRcCUhpRSlGgVS5BoFkdAU8OM85jpcHV9lChoBmgJaA9DCEWA07t4A07AlIaUUpRoFUtKaBZHQFPHNn5BTn91fZQoaAZoCWgPQwgCZylZTrRRwJSGlFKUaBVLYGgWR0BTyWDL8rI6dX2UKGgGaAloD0MIGcv0S8RFRcCUhpRSlGgVS4loFkdAU8tBD5TIenV9lChoBmgJaA9DCNf2dkvycWHAlIaUUpRoFUt7aBZHQFPOJdB0ITp1fZQoaAZoCWgPQwgEVaNXA9FQwJSGlFKUaBVLWGgWR0BT0oYrJ8v3dX2UKGgGaAloD0MISu8bX3v+NsCUhpRSlGgVS1loFkdAU9kkmhM8HXV9lChoBmgJaA9DCHKlngWh4EbAlIaUUpRoFUtPaBZHQFPZuQp4KQd1fZQoaAZoCWgPQwghlPdxNIM0wJSGlFKUaBVLimgWR0BT2nOv+wTudX2UKGgGaAloD0MIYw0XuafdVMCUhpRSlGgVS01oFkdAU9tYB/7SA3V9lChoBmgJaA9DCNlg4STNv1/AlIaUUpRoFUtoaBZHQFPf3Hq/ub91fZQoaAZoCWgPQwhyNEdWfvFnwJSGlFKUaBVLaGgWR0BT4t9+gDigdX2UKGgGaAloD0MIInAk0KCIcMCUhpRSlGgVS2toFkdAU+omiQDFInV9lChoBmgJaA9DCGowDcNHNCtAlIaUUpRoFUtlaBZHQFP2QFs54np1fZQoaAZoCWgPQwjtZHCUvDJEwJSGlFKUaBVLdmgWR0BT9sVQAMlUdX2UKGgGaAloD0MILQYP0761QMCUhpRSlGgVS09oFkdAU/hKraM72nV9lChoBmgJaA9DCH+EYcCSnlbAlIaUUpRoFUt1aBZHQFP6j8k2P1d1fZQoaAZoCWgPQwiz0w/qIoJQwJSGlFKUaBVLfGgWR0BT/dEofCAMdX2UKGgGaAloD0MIQpPEknLnSsCUhpRSlGgVS3NoFkdAVAGSmqHXVnV9lChoBmgJaA9DCAUVVb/SdVfAlIaUUpRoFUtwaBZHQFQDZDiOvMd1fZQoaAZoCWgPQwhNTu0MUwVCwJSGlFKUaBVLfWgWR0BUBHL7oB7vdX2UKGgGaAloD0MIDhKifEEL3T+UhpRSlGgVS15oFkdAVAdlQMx46nV9lChoBmgJaA9DCLb103/W1FbAlIaUUpRoFUthaBZHQFQIKQ7tAs11fZQoaAZoCWgPQwi+TBQhdVdWwJSGlFKUaBVLZmgWR0BUCdAs052hdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26970ecdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26970ece50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26970ecee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26970ecf70>", "_build": "<function ActorCriticPolicy._build at 0x7f26970f2040>", "forward": "<function ActorCriticPolicy.forward at 0x7f26970f20d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26970f2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26970f21f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26970f2280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26970f2310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26970f23a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26970f2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26970efe40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678359677529809007, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb8v70WzXI/wklgvQT/tr4sCy29ON8BPQAAAAAAAAAAzdaivSmIZ7qtQak98tods34YEDoKYiazAAAAAAAAAAAA/968z9k1vDCPvTwC1To93DkOPYoeQjsAAIA/AACAPwBi2DxIZfE+Qw37vWf1ib6HK0C9M7eJvQAAAAAAAAAAM4miPAqyCrv1UV89X8OtPPw7ILzaH5U9AACAPwAAgD9Agck9EuUSPzp8rrxy34q+KoorPYWPgL0AAAAAAAAAAFgRkb7Ig4Q/49Isvmrtub5uWEO+xcGcPQAAAAAAAAAAzSUSPZ7jrT2sI0y+mTVhvj0ZCb7+2WA8AAAAAAAAAACNSa+9XK8CukxwoLX1XsqwC1MlO7vjpzQAAIA/AACAP2YCubsE8Po9pQx5vfV3FL4Ti2u9o9DjvQAAAAAAAAAAYFiRPtt4ZD+AuXs+FZ0Ov35x7j5mQ/+9AAAAAAAAAADaH6u9J96pPypkNr8Ej/G+O56Ju/jsR74AAAAAAAAAAIB0Rr7HBIg+RolePsO0gL4xXaC8/eeNuwAAAAAAAAAAAJCFuh2uvD/G1KC8vMWDPrHT2zu/ryc9AAAAAAAAAADaxQa+p5cEP/abKz6pbKS+jM4CPSDB4j0AAAAAAAAAAOCAdj7i9nY/tvXtPkVt+r6bsbI+c8ddPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpb3BF6YwcECUhpRSlIwBbJRNNwGMAXSUR0CgNGm0E5hjdX2UKGgGaAloD0MIbF1qhP6HcECUhpRSlGgVS/xoFkdAoDSDg2qDLHV9lChoBmgJaA9DCPLpsS2DLnJAlIaUUpRoFU0gAWgWR0CgNKmukk8idX2UKGgGaAloD0MIhqxu9ZyrcUCUhpRSlGgVTTQBaBZHQKA1Cz7di2F1fZQoaAZoCWgPQwgIPgYrTrdwQJSGlFKUaBVNGwFoFkdAoDYPReC04XV9lChoBmgJaA9DCD27fOsD9HBAlIaUUpRoFU0UAWgWR0CgNhADA8B/dX2UKGgGaAloD0MIRidLrfcEcUCUhpRSlGgVTREBaBZHQKA2gwpvxYt1fZQoaAZoCWgPQwjNOuP7othwQJSGlFKUaBVNSwFoFkdAoDaynm7rcHV9lChoBmgJaA9DCF6DvvR2snBAlIaUUpRoFU08AWgWR0CgNwGZmZmadX2UKGgGaAloD0MIwhiRKPRxcUCUhpRSlGgVTQQBaBZHQKA3C7xusLh1fZQoaAZoCWgPQwj11sBWibJwQJSGlFKUaBVNJwFoFkdAoDcqPp6hQHV9lChoBmgJaA9DCLQDritmwk1AlIaUUpRoFUvHaBZHQKA3y5IYm9h1fZQoaAZoCWgPQwj8cfvl079wQJSGlFKUaBVNNAFoFkdAoDfjXnQpnnV9lChoBmgJaA9DCJJc/kN6LHBAlIaUUpRoFU00AWgWR0CgOFJGe+VUdX2UKGgGaAloD0MI4dBbPHz+cUCUhpRSlGgVTToBaBZHQKA4cT5ftyB1fZQoaAZoCWgPQwgpz7wcdmxxQJSGlFKUaBVNtgFoFkdAoDiAY1pCbHV9lChoBmgJaA9DCHdNSGuM7m1AlIaUUpRoFU0mAWgWR0CgOPlbmlqKdX2UKGgGaAloD0MI3IR7ZR5UckCUhpRSlGgVTSoBaBZHQKA5IRp1zQx1fZQoaAZoCWgPQwgLJZNTO+dwQJSGlFKUaBVNPAFoFkdAoDn3hXKbKHV9lChoBmgJaA9DCNCzWfX5RnFAlIaUUpRoFU0BAWgWR0CgOgnR9gF5dX2UKGgGaAloD0MI8gcDz708ckCUhpRSlGgVTQcBaBZHQKA6IAmzByl1fZQoaAZoCWgPQwhjDoKO1ndxQJSGlFKUaBVL8WgWR0CgOlQFkhA4dX2UKGgGaAloD0MI9g1MbhTaUkCUhpRSlGgVS8VoFkdAoDq5dnkDIXV9lChoBmgJaA9DCNun4zEDKW9AlIaUUpRoFU0mAWgWR0CgOu01IiC8dX2UKGgGaAloD0MIH4MVp9osbkCUhpRSlGgVTREBaBZHQKA7E176YVt1fZQoaAZoCWgPQwjSNCiaB0VxQJSGlFKUaBVNKAFoFkdAoDuBEF4cFXV9lChoBmgJaA9DCBLds67RVXNAlIaUUpRoFU08AWgWR0CgO6MJY1YRdX2UKGgGaAloD0MIniRdM/n2bECUhpRSlGgVTTABaBZHQKA8UN+b3Gp1fZQoaAZoCWgPQwhEvkupS/twQJSGlFKUaBVL+GgWR0CgPJaH0se5dX2UKGgGaAloD0MIhdBBl/AKb0CUhpRSlGgVTSABaBZHQKA8sA3DNyJ1fZQoaAZoCWgPQwgbTMPwEetyQJSGlFKUaBVNKgFoFkdAoDzGBas6rHV9lChoBmgJaA9DCEc4LXiRlXJAlIaUUpRoFU0kAWgWR0CgPWa68QI2dX2UKGgGaAloD0MI6Nms+txLbUCUhpRSlGgVTQABaBZHQKA9sFrVOKx1fZQoaAZoCWgPQwhfeZCeIntvQJSGlFKUaBVNEQFoFkdAoD5UGs3hoHV9lChoBmgJaA9DCHB87Zml+mZAlIaUUpRoFU3oA2gWR0CgPokZJkGzdX2UKGgGaAloD0MIZHWr5yQ0cECUhpRSlGgVTTIBaBZHQKA+nnNgSe11fZQoaAZoCWgPQwgDe0ykdABwQJSGlFKUaBVNCQFoFkdAoD6lSqEOAnV9lChoBmgJaA9DCDS6g9jZB3JAlIaUUpRoFU1hAWgWR0CgPy/TkQwsdX2UKGgGaAloD0MIJjeKrDVrc0CUhpRSlGgVTTgBaBZHQKA/gHgP3BZ1fZQoaAZoCWgPQwgD0ZMy6cdwQJSGlFKUaBVNIAFoFkdAoD/AyM1jzHV9lChoBmgJaA9DCCo5J/aQl3FAlIaUUpRoFU0YAWgWR0CgP8ihvitJdX2UKGgGaAloD0MI8db5t0tbb0CUhpRSlGgVTUUBaBZHQKA/1yFwkxB1fZQoaAZoCWgPQwjXhopxft5xQJSGlFKUaBVL/mgWR0CgQBEPMB6sdX2UKGgGaAloD0MI0sJlFfb0cUCUhpRSlGgVTSMBaBZHQKBL7+Lm6oV1fZQoaAZoCWgPQwinyYy3FdNtQJSGlFKUaBVNLgFoFkdAoEwNu3trsXV9lChoBmgJaA9DCDjzqzmArHBAlIaUUpRoFU0BAWgWR0CgTCJ7sv7FdX2UKGgGaAloD0MI+1jBbwOZcECUhpRSlGgVTTkBaBZHQKBMLfm9xqB1fZQoaAZoCWgPQwgw2uOF9AduQJSGlFKUaBVNJgFoFkdAoE112Pkq+nV9lChoBmgJaA9DCDkPJzDd0HBAlIaUUpRoFU0BAWgWR0CgTgbfHggpdX2UKGgGaAloD0MImus00pIkckCUhpRSlGgVTRABaBZHQKBOQKekHlh1fZQoaAZoCWgPQwgChA8lmqByQJSGlFKUaBVNxQJoFkdAoE6fOpsGgXV9lChoBmgJaA9DCEKWBRP/xHFAlIaUUpRoFU0aAWgWR0CgTq4P5HmSdX2UKGgGaAloD0MIipElcyx3UUCUhpRSlGgVS9FoFkdAoE7tbkfcOHV9lChoBmgJaA9DCIelgR/V929AlIaUUpRoFU0AAWgWR0CgTvUnG828dX2UKGgGaAloD0MIg9pv7cRab0CUhpRSlGgVTU8BaBZHQKBPVrl/6O51fZQoaAZoCWgPQwjcn4uGjE9xQJSGlFKUaBVL+mgWR0CgT5i4z7/GdX2UKGgGaAloD0MIIY/gRkp4ckCUhpRSlGgVTQ4BaBZHQKBQCD7Ikqt1fZQoaAZoCWgPQwjsTneeePo2QJSGlFKUaBVL12gWR0CgUMmbkOqedX2UKGgGaAloD0MIr5Y7M8Gfb0CUhpRSlGgVTTEBaBZHQKBRL61LJ0Z1fZQoaAZoCWgPQwi858ByxABxQJSGlFKUaBVL9GgWR0CgUYEj5bhWdX2UKGgGaAloD0MI3Siy1tDTcECUhpRSlGgVS/toFkdAoFGW96C17nV9lChoBmgJaA9DCLYwC+1cjHJAlIaUUpRoFU0gAWgWR0CgUfBStNi6dX2UKGgGaAloD0MIUTI5tTMobkCUhpRSlGgVTRwBaBZHQKBSzeuV5bB1fZQoaAZoCWgPQwhKJqd2BhxxQJSGlFKUaBVNFAFoFkdAoFMJHTZxrHV9lChoBmgJaA9DCF0av/DKlHBAlIaUUpRoFU0IAWgWR0CgUzc5S3spdX2UKGgGaAloD0MIlzYclsZicECUhpRSlGgVTSEBaBZHQKBTYBQvYe11fZQoaAZoCWgPQwihSWJJ+XVyQJSGlFKUaBVNCAFoFkdAoFNv446wMnV9lChoBmgJaA9DCIofY+6akHBAlIaUUpRoFU0pAWgWR0CgU7/ywwCbdX2UKGgGaAloD0MIAb9GkuBXcECUhpRSlGgVTS4BaBZHQKBUCnUDuBt1fZQoaAZoCWgPQwhwmGiQAspuQJSGlFKUaBVNFwFoFkdAoFQwrJ8v3HV9lChoBmgJaA9DCJDAH36+3XBAlIaUUpRoFU00AWgWR0CgVG+FL39KdX2UKGgGaAloD0MIwVJdwAu/cECUhpRSlGgVTRIBaBZHQKBUdjENvwV1fZQoaAZoCWgPQwjDYz+LpaVvQJSGlFKUaBVL/GgWR0CgVPKvV3EAdX2UKGgGaAloD0MINDDysiYuPUCUhpRSlGgVS/doFkdAoFUpesxO+XV9lChoBmgJaA9DCIHLY81I/G1AlIaUUpRoFU1KAWgWR0CgVc5hz/6wdX2UKGgGaAloD0MI6lp7n+rFcUCUhpRSlGgVTRYBaBZHQKBWBNSqEOB1fZQoaAZoCWgPQwh/hGHA0vhxQJSGlFKUaBVNQgFoFkdAoFYjzPKMenV9lChoBmgJaA9DCIfB/BWydG9AlIaUUpRoFU0iAWgWR0CgVxCcf/3ndX2UKGgGaAloD0MIgJpatpZTcECUhpRSlGgVTQwBaBZHQKBXJb9If8x1fZQoaAZoCWgPQwhKJqd2BpZvQJSGlFKUaBVNDgFoFkdAoFdS20AtF3V9lChoBmgJaA9DCJWe6SVGtm9AlIaUUpRoFU0UAWgWR0CgV3c1O0swdX2UKGgGaAloD0MIQPz89+AvcUCUhpRSlGgVTQwBaBZHQKBXqTCcf/51fZQoaAZoCWgPQwhw7URJiA1yQJSGlFKUaBVNPAFoFkdAoFeqagElmnV9lChoBmgJaA9DCLLZkeq7n3FAlIaUUpRoFUv8aBZHQKBXsya/h2p1fZQoaAZoCWgPQwj2Q2yw8DpwQJSGlFKUaBVNGgFoFkdAoFh4LPUrkXV9lChoBmgJaA9DCIQNT6/UpHBAlIaUUpRoFU08AWgWR0CgWMAwwj+rdX2UKGgGaAloD0MIIHnnUEbgckCUhpRSlGgVTSgBaBZHQKBZN8DSw4d1fZQoaAZoCWgPQwiZnUXvFN1xQJSGlFKUaBVNGgFoFkdAoFk+hmGucXV9lChoBmgJaA9DCC140VfQPXFAlIaUUpRoFU1hAWgWR0CgWY3EQ5FPdX2UKGgGaAloD0MII6DCEeSfckCUhpRSlGgVTQoBaBZHQKBaB+0gKWt1fZQoaAZoCWgPQwhSDfs98cVwQJSGlFKUaBVNMwFoFkdAoFpHTuv2XnV9lChoBmgJaA9DCPXabKxEUHFAlIaUUpRoFU0iAWgWR0CgWkO5SWJKdX2UKGgGaAloD0MIMXiY9k0qZ0CUhpRSlGgVTegDaBZHQKBa1NcnmaJ1fZQoaAZoCWgPQwhoz2VqkppxQJSGlFKUaBVNAQFoFkdAoFrcEX+ERXV9lChoBmgJaA9DCPxW68Tld29AlIaUUpRoFUv/aBZHQKBbcy2QXAN1fZQoaAZoCWgPQwi6L2e2K9dwQJSGlFKUaBVNDQFoFkdAoFu4UUO/cnV9lChoBmgJaA9DCGLYYUz6U21AlIaUUpRoFU0iAWgWR0CgW9BZpztDdX2UKGgGaAloD0MIdEaU9ob8bUCUhpRSlGgVTSIBaBZHQKBcCGATZg51fZQoaAZoCWgPQwjgEoB/So00QJSGlFKUaBVL02gWR0CgXHoLXtjTdX2UKGgGaAloD0MIoBfuXBh/cUCUhpRSlGgVTWQBaBZHQKBchfixVyZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 396, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 278.4462849098096, "std_reward": 18.242977571959507, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T11:37:02.442985"}
|
unit1-ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3e270aa74568e6168535529b71b6de419eb8a8bff192be6b965499219f443c
|
3 |
+
size 147409
|
unit1-ppo-LunarLander-v2/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1507328,
|
47 |
+
"_total_timesteps": 1500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678359677529809007,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb8v70WzXI/wklgvQT/tr4sCy29ON8BPQAAAAAAAAAAzdaivSmIZ7qtQak98tods34YEDoKYiazAAAAAAAAAAAA/968z9k1vDCPvTwC1To93DkOPYoeQjsAAIA/AACAPwBi2DxIZfE+Qw37vWf1ib6HK0C9M7eJvQAAAAAAAAAAM4miPAqyCrv1UV89X8OtPPw7ILzaH5U9AACAPwAAgD9Agck9EuUSPzp8rrxy34q+KoorPYWPgL0AAAAAAAAAAFgRkb7Ig4Q/49Isvmrtub5uWEO+xcGcPQAAAAAAAAAAzSUSPZ7jrT2sI0y+mTVhvj0ZCb7+2WA8AAAAAAAAAACNSa+9XK8CukxwoLX1XsqwC1MlO7vjpzQAAIA/AACAP2YCubsE8Po9pQx5vfV3FL4Ti2u9o9DjvQAAAAAAAAAAYFiRPtt4ZD+AuXs+FZ0Ov35x7j5mQ/+9AAAAAAAAAADaH6u9J96pPypkNr8Ej/G+O56Ju/jsR74AAAAAAAAAAIB0Rr7HBIg+RolePsO0gL4xXaC8/eeNuwAAAAAAAAAAAJCFuh2uvD/G1KC8vMWDPrHT2zu/ryc9AAAAAAAAAADaxQa+p5cEP/abKz6pbKS+jM4CPSDB4j0AAAAAAAAAAOCAdj7i9nY/tvXtPkVt+r6bsbI+c8ddPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.004885333333333408,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpb3BF6YwcECUhpRSlIwBbJRNNwGMAXSUR0CgNGm0E5hjdX2UKGgGaAloD0MIbF1qhP6HcECUhpRSlGgVS/xoFkdAoDSDg2qDLHV9lChoBmgJaA9DCPLpsS2DLnJAlIaUUpRoFU0gAWgWR0CgNKmukk8idX2UKGgGaAloD0MIhqxu9ZyrcUCUhpRSlGgVTTQBaBZHQKA1Cz7di2F1fZQoaAZoCWgPQwgIPgYrTrdwQJSGlFKUaBVNGwFoFkdAoDYPReC04XV9lChoBmgJaA9DCD27fOsD9HBAlIaUUpRoFU0UAWgWR0CgNhADA8B/dX2UKGgGaAloD0MIRidLrfcEcUCUhpRSlGgVTREBaBZHQKA2gwpvxYt1fZQoaAZoCWgPQwjNOuP7othwQJSGlFKUaBVNSwFoFkdAoDaynm7rcHV9lChoBmgJaA9DCF6DvvR2snBAlIaUUpRoFU08AWgWR0CgNwGZmZmadX2UKGgGaAloD0MIwhiRKPRxcUCUhpRSlGgVTQQBaBZHQKA3C7xusLh1fZQoaAZoCWgPQwj11sBWibJwQJSGlFKUaBVNJwFoFkdAoDcqPp6hQHV9lChoBmgJaA9DCLQDritmwk1AlIaUUpRoFUvHaBZHQKA3y5IYm9h1fZQoaAZoCWgPQwj8cfvl079wQJSGlFKUaBVNNAFoFkdAoDfjXnQpnnV9lChoBmgJaA9DCJJc/kN6LHBAlIaUUpRoFU00AWgWR0CgOFJGe+VUdX2UKGgGaAloD0MI4dBbPHz+cUCUhpRSlGgVTToBaBZHQKA4cT5ftyB1fZQoaAZoCWgPQwgpz7wcdmxxQJSGlFKUaBVNtgFoFkdAoDiAY1pCbHV9lChoBmgJaA9DCHdNSGuM7m1AlIaUUpRoFU0mAWgWR0CgOPlbmlqKdX2UKGgGaAloD0MI3IR7ZR5UckCUhpRSlGgVTSoBaBZHQKA5IRp1zQx1fZQoaAZoCWgPQwgLJZNTO+dwQJSGlFKUaBVNPAFoFkdAoDn3hXKbKHV9lChoBmgJaA9DCNCzWfX5RnFAlIaUUpRoFU0BAWgWR0CgOgnR9gF5dX2UKGgGaAloD0MI8gcDz708ckCUhpRSlGgVTQcBaBZHQKA6IAmzByl1fZQoaAZoCWgPQwhjDoKO1ndxQJSGlFKUaBVL8WgWR0CgOlQFkhA4dX2UKGgGaAloD0MI9g1MbhTaUkCUhpRSlGgVS8VoFkdAoDq5dnkDIXV9lChoBmgJaA9DCNun4zEDKW9AlIaUUpRoFU0mAWgWR0CgOu01IiC8dX2UKGgGaAloD0MIH4MVp9osbkCUhpRSlGgVTREBaBZHQKA7E176YVt1fZQoaAZoCWgPQwjSNCiaB0VxQJSGlFKUaBVNKAFoFkdAoDuBEF4cFXV9lChoBmgJaA9DCBLds67RVXNAlIaUUpRoFU08AWgWR0CgO6MJY1YRdX2UKGgGaAloD0MIniRdM/n2bECUhpRSlGgVTTABaBZHQKA8UN+b3Gp1fZQoaAZoCWgPQwhEvkupS/twQJSGlFKUaBVL+GgWR0CgPJaH0se5dX2UKGgGaAloD0MIhdBBl/AKb0CUhpRSlGgVTSABaBZHQKA8sA3DNyJ1fZQoaAZoCWgPQwgbTMPwEetyQJSGlFKUaBVNKgFoFkdAoDzGBas6rHV9lChoBmgJaA9DCEc4LXiRlXJAlIaUUpRoFU0kAWgWR0CgPWa68QI2dX2UKGgGaAloD0MI6Nms+txLbUCUhpRSlGgVTQABaBZHQKA9sFrVOKx1fZQoaAZoCWgPQwhfeZCeIntvQJSGlFKUaBVNEQFoFkdAoD5UGs3hoHV9lChoBmgJaA9DCHB87Zml+mZAlIaUUpRoFU3oA2gWR0CgPokZJkGzdX2UKGgGaAloD0MIZHWr5yQ0cECUhpRSlGgVTTIBaBZHQKA+nnNgSe11fZQoaAZoCWgPQwgDe0ykdABwQJSGlFKUaBVNCQFoFkdAoD6lSqEOAnV9lChoBmgJaA9DCDS6g9jZB3JAlIaUUpRoFU1hAWgWR0CgPy/TkQwsdX2UKGgGaAloD0MIJjeKrDVrc0CUhpRSlGgVTTgBaBZHQKA/gHgP3BZ1fZQoaAZoCWgPQwgD0ZMy6cdwQJSGlFKUaBVNIAFoFkdAoD/AyM1jzHV9lChoBmgJaA9DCCo5J/aQl3FAlIaUUpRoFU0YAWgWR0CgP8ihvitJdX2UKGgGaAloD0MI8db5t0tbb0CUhpRSlGgVTUUBaBZHQKA/1yFwkxB1fZQoaAZoCWgPQwjXhopxft5xQJSGlFKUaBVL/mgWR0CgQBEPMB6sdX2UKGgGaAloD0MI0sJlFfb0cUCUhpRSlGgVTSMBaBZHQKBL7+Lm6oV1fZQoaAZoCWgPQwinyYy3FdNtQJSGlFKUaBVNLgFoFkdAoEwNu3trsXV9lChoBmgJaA9DCDjzqzmArHBAlIaUUpRoFU0BAWgWR0CgTCJ7sv7FdX2UKGgGaAloD0MI+1jBbwOZcECUhpRSlGgVTTkBaBZHQKBMLfm9xqB1fZQoaAZoCWgPQwgw2uOF9AduQJSGlFKUaBVNJgFoFkdAoE112Pkq+nV9lChoBmgJaA9DCDkPJzDd0HBAlIaUUpRoFU0BAWgWR0CgTgbfHggpdX2UKGgGaAloD0MImus00pIkckCUhpRSlGgVTRABaBZHQKBOQKekHlh1fZQoaAZoCWgPQwgChA8lmqByQJSGlFKUaBVNxQJoFkdAoE6fOpsGgXV9lChoBmgJaA9DCEKWBRP/xHFAlIaUUpRoFU0aAWgWR0CgTq4P5HmSdX2UKGgGaAloD0MIipElcyx3UUCUhpRSlGgVS9FoFkdAoE7tbkfcOHV9lChoBmgJaA9DCIelgR/V929AlIaUUpRoFU0AAWgWR0CgTvUnG828dX2UKGgGaAloD0MIg9pv7cRab0CUhpRSlGgVTU8BaBZHQKBPVrl/6O51fZQoaAZoCWgPQwjcn4uGjE9xQJSGlFKUaBVL+mgWR0CgT5i4z7/GdX2UKGgGaAloD0MIIY/gRkp4ckCUhpRSlGgVTQ4BaBZHQKBQCD7Ikqt1fZQoaAZoCWgPQwjsTneeePo2QJSGlFKUaBVL12gWR0CgUMmbkOqedX2UKGgGaAloD0MIr5Y7M8Gfb0CUhpRSlGgVTTEBaBZHQKBRL61LJ0Z1fZQoaAZoCWgPQwi858ByxABxQJSGlFKUaBVL9GgWR0CgUYEj5bhWdX2UKGgGaAloD0MI3Siy1tDTcECUhpRSlGgVS/toFkdAoFGW96C17nV9lChoBmgJaA9DCLYwC+1cjHJAlIaUUpRoFU0gAWgWR0CgUfBStNi6dX2UKGgGaAloD0MIUTI5tTMobkCUhpRSlGgVTRwBaBZHQKBSzeuV5bB1fZQoaAZoCWgPQwhKJqd2BhxxQJSGlFKUaBVNFAFoFkdAoFMJHTZxrHV9lChoBmgJaA9DCF0av/DKlHBAlIaUUpRoFU0IAWgWR0CgUzc5S3spdX2UKGgGaAloD0MIlzYclsZicECUhpRSlGgVTSEBaBZHQKBTYBQvYe11fZQoaAZoCWgPQwihSWJJ+XVyQJSGlFKUaBVNCAFoFkdAoFNv446wMnV9lChoBmgJaA9DCIofY+6akHBAlIaUUpRoFU0pAWgWR0CgU7/ywwCbdX2UKGgGaAloD0MIAb9GkuBXcECUhpRSlGgVTS4BaBZHQKBUCnUDuBt1fZQoaAZoCWgPQwhwmGiQAspuQJSGlFKUaBVNFwFoFkdAoFQwrJ8v3HV9lChoBmgJaA9DCJDAH36+3XBAlIaUUpRoFU00AWgWR0CgVG+FL39KdX2UKGgGaAloD0MIwVJdwAu/cECUhpRSlGgVTRIBaBZHQKBUdjENvwV1fZQoaAZoCWgPQwjDYz+LpaVvQJSGlFKUaBVL/GgWR0CgVPKvV3EAdX2UKGgGaAloD0MINDDysiYuPUCUhpRSlGgVS/doFkdAoFUpesxO+XV9lChoBmgJaA9DCIHLY81I/G1AlIaUUpRoFU1KAWgWR0CgVc5hz/6wdX2UKGgGaAloD0MI6lp7n+rFcUCUhpRSlGgVTRYBaBZHQKBWBNSqEOB1fZQoaAZoCWgPQwh/hGHA0vhxQJSGlFKUaBVNQgFoFkdAoFYjzPKMenV9lChoBmgJaA9DCIfB/BWydG9AlIaUUpRoFU0iAWgWR0CgVxCcf/3ndX2UKGgGaAloD0MIgJpatpZTcECUhpRSlGgVTQwBaBZHQKBXJb9If8x1fZQoaAZoCWgPQwhKJqd2BpZvQJSGlFKUaBVNDgFoFkdAoFdS20AtF3V9lChoBmgJaA9DCJWe6SVGtm9AlIaUUpRoFU0UAWgWR0CgV3c1O0swdX2UKGgGaAloD0MIQPz89+AvcUCUhpRSlGgVTQwBaBZHQKBXqTCcf/51fZQoaAZoCWgPQwhw7URJiA1yQJSGlFKUaBVNPAFoFkdAoFeqagElmnV9lChoBmgJaA9DCLLZkeq7n3FAlIaUUpRoFUv8aBZHQKBXsya/h2p1fZQoaAZoCWgPQwj2Q2yw8DpwQJSGlFKUaBVNGgFoFkdAoFh4LPUrkXV9lChoBmgJaA9DCIQNT6/UpHBAlIaUUpRoFU08AWgWR0CgWMAwwj+rdX2UKGgGaAloD0MIIHnnUEbgckCUhpRSlGgVTSgBaBZHQKBZN8DSw4d1fZQoaAZoCWgPQwiZnUXvFN1xQJSGlFKUaBVNGgFoFkdAoFk+hmGucXV9lChoBmgJaA9DCC140VfQPXFAlIaUUpRoFU1hAWgWR0CgWY3EQ5FPdX2UKGgGaAloD0MII6DCEeSfckCUhpRSlGgVTQoBaBZHQKBaB+0gKWt1fZQoaAZoCWgPQwhSDfs98cVwQJSGlFKUaBVNMwFoFkdAoFpHTuv2XnV9lChoBmgJaA9DCPXabKxEUHFAlIaUUpRoFU0iAWgWR0CgWkO5SWJKdX2UKGgGaAloD0MIMXiY9k0qZ0CUhpRSlGgVTegDaBZHQKBa1NcnmaJ1fZQoaAZoCWgPQwhoz2VqkppxQJSGlFKUaBVNAQFoFkdAoFrcEX+ERXV9lChoBmgJaA9DCPxW68Tld29AlIaUUpRoFUv/aBZHQKBbcy2QXAN1fZQoaAZoCWgPQwi6L2e2K9dwQJSGlFKUaBVNDQFoFkdAoFu4UUO/cnV9lChoBmgJaA9DCGLYYUz6U21AlIaUUpRoFU0iAWgWR0CgW9BZpztDdX2UKGgGaAloD0MIdEaU9ob8bUCUhpRSlGgVTSIBaBZHQKBcCGATZg51fZQoaAZoCWgPQwjgEoB/So00QJSGlFKUaBVL02gWR0CgXHoLXtjTdX2UKGgGaAloD0MIoBfuXBh/cUCUhpRSlGgVTWQBaBZHQKBchfixVyZ1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 396,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
unit1-ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c3d89093b26daa3e650ac39931c26028c98ad1a7c884997db4baebb48012936
|
3 |
size 87929
|
unit1-ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2d892f6032c1733add4a9d30b3fff7344ea534633533111a2ba7809c1679a60
|
3 |
size 43393
|