Quentin Gallouédec commited on
Commit
27216e7
·
1 Parent(s): 7df592d

Stochastic eval

Browse files
ppo-MiniGrid-ObstructedMaze-2Dlh-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f469262f08bd1470f8dff6b4f2b2834e15fdf2e7673de01e97fffa5cf43dd1f
3
  size 4390070
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a17e5e02719a6b34b79d2430dbd6b0f9dd1fe0e289858b2f806497328764beb8
3
  size 4390070
ppo-MiniGrid-ObstructedMaze-2Dlh-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f101d4040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f101d40d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f101d4160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f101d41f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f8f101d4280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f8f101d4310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8f101d43a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f101d4430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f8f101d44c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f101d4550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f101d45e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f101d4670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f8f101d5340>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e6d094040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e6d0940d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e6d094160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e6d0941f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6e6d094280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6e6d094310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e6d0943a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e6d094430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6e6d0944c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e6d094550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e6d0945e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e6d094670>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6e6d08ed40>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f0b1551747559cccdbc00028a67b1a9fbdcb2c9a1b5405774d4c123f5d80696
3
- size 57094
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:748085053d44037384e56f3cba3a8274f18224f1bdec2458aad3119003e665c0
3
+ size 70253
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 0.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T18:24:09.056987"}
 
1
+ {"mean_reward": 0.0, "std_reward": 0.0, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T20:14:08.874751"}