File size: 2,708 Bytes
6cf28c2 44d0706 6cf28c2 44d0706 6cf28c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: RecurrentPPO
results:
- metrics:
- type: mean_reward
value: 880.39 +/- 31.90
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **RecurrentPPO** Agent playing **CarRacing-v0**
This is a trained model of a **RecurrentPPO** agent playing **CarRacing-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo_lstm --env CarRacing-v0 -orga sb3 -f logs/
python enjoy.py --algo ppo_lstm --env CarRacing-v0 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ppo_lstm --env CarRacing-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo_lstm --env CarRacing-v0 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 128),
('clip_range', 0.2),
('ent_coef', 0.0),
('env_wrapper',
[{'gym.wrappers.resize_observation.ResizeObservation': {'shape': 64}},
{'gym.wrappers.gray_scale_observation.GrayScaleObservation': {'keep_dim': True}}]),
('frame_stack', 2),
('gae_lambda', 0.95),
('gamma', 0.99),
('learning_rate', 'lin_1e-4'),
('max_grad_norm', 0.5),
('n_envs', 8),
('n_epochs', 10),
('n_steps', 512),
('n_timesteps', 4000000.0),
('normalize', "{'norm_obs': False, 'norm_reward': True}"),
('policy', 'CnnLstmPolicy'),
('policy_kwargs',
'dict(log_std_init=-2, ortho_init=False, '
'enable_critic_lstm=False, activation_fn=nn.GELU, '
'lstm_hidden_size=128, )'),
('sde_sample_freq', 4),
('use_sde', True),
('vf_coef', 0.5),
('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})])
```
# Environment Arguments
```python
{'verbose': 0}
```
|