---
library_name: stable-baselines3
tags:
- RoadRunnerNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: QRDQN
results:
- metrics:
- type: mean_reward
value: 920.00 +/- 107.70
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: RoadRunnerNoFrameskip-v4
type: RoadRunnerNoFrameskip-v4
---
# **QRDQN** Agent playing **RoadRunnerNoFrameskip-v4**
This is a trained model of a **QRDQN** agent playing **RoadRunnerNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo qrdqn --env RoadRunnerNoFrameskip-v4 -orga sb3 -f logs/
python enjoy.py --algo qrdqn --env RoadRunnerNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo qrdqn --env RoadRunnerNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo qrdqn --env RoadRunnerNoFrameskip-v4 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_fraction', 0.025),
('frame_stack', 4),
('n_timesteps', 10000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('normalize', False)])
```