Initial commit
Browse files- .gitattributes +1 -0
- README.md +66 -0
- args.yml +59 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-BipedalWalkerHardcore-v3.zip +3 -0
- tqc-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- tqc-BipedalWalkerHardcore-v3/actor.optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/critic.optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/data +122 -0
- tqc-BipedalWalkerHardcore-v3/ent_coef_optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/policy.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 208.05 +/- 121.38
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalkerHardcore-v3
|
20 |
+
type: BipedalWalkerHardcore-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **BipedalWalkerHardcore-v3**
|
24 |
+
This is a trained model of a **TQC** agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env BipedalWalkerHardcore-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env BipedalWalkerHardcore-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 256),
|
54 |
+
('buffer_size', 1000000),
|
55 |
+
('ent_coef', 'auto'),
|
56 |
+
('gamma', 0.99),
|
57 |
+
('gradient_steps', 1),
|
58 |
+
('learning_rate', 'lin_7.3e-4'),
|
59 |
+
('learning_starts', 10000),
|
60 |
+
('n_timesteps', 2000000.0),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
63 |
+
('tau', 0.01),
|
64 |
+
('train_freq', 1),
|
65 |
+
('normalize', False)])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - env
|
5 |
+
- BipedalWalkerHardcore-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 50000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 3024001206
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- false
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.99
|
10 |
+
- - gradient_steps
|
11 |
+
- 1
|
12 |
+
- - learning_rate
|
13 |
+
- lin_7.3e-4
|
14 |
+
- - learning_starts
|
15 |
+
- 10000
|
16 |
+
- - n_timesteps
|
17 |
+
- 2000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:893e9e1eec2af8806b49b4233a876ea963923129d982526dae6220aec78eabf1
|
3 |
+
size 476618
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 208.04946040000004, "std_reward": 121.38381506379628, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T21:40:05.221843"}
|
tqc-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2bcabe1e1aa1e2abdaaaa9cd3e00ec2d69b1511e221921d3053ca80aa55e9b
|
3 |
+
size 6099713
|
tqc-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
tqc-BipedalWalkerHardcore-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac2578d8c68950424cbc90bbdc68cb1ced97d97dbfac53268ccf081e2cd6510a
|
3 |
+
size 1066037
|
tqc-BipedalWalkerHardcore-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ad130338dea357bb15311d03492d3cc7396a4e4148177d6a5d21167f350d08
|
3 |
+
size 2237085
|
tqc-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f42467ff710>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f42467ff7a0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f42467ff830>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f42467ff8c0>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f42467ff950>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f42467ff9e0>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f42467ffa70>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f42467ffb00>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f42467ffb90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f42467f5690>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"net_arch": [
|
22 |
+
400,
|
23 |
+
300
|
24 |
+
],
|
25 |
+
"use_sde": false
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxiFlGgKiUNgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsYhZRoColDYAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLGIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxiFlGgoiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxiFlHViLg==",
|
30 |
+
"dtype": "float32",
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
35 |
+
"_np_random": null,
|
36 |
+
"_shape": [
|
37 |
+
24
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
+
":serialized:": "gASVKwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgKiUMQAACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLBIWUaAqJQxAAAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsEhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwSFlGgoiUMEAQEBAZR0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGg4jAVzdGF0ZZR9lCiMA2tleZRoEGgSSwCFlGgUh5RSlChLAU1wAoWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZRLBIWUdWIu",
|
43 |
+
"dtype": "float32",
|
44 |
+
"low": "[-1. -1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True True]",
|
47 |
+
"bounded_above": "[ True True True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)",
|
49 |
+
"_shape": [
|
50 |
+
4
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"n_envs": 1,
|
54 |
+
"num_timesteps": 2000000,
|
55 |
+
"_total_timesteps": 2000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1614945894.3727493,
|
60 |
+
"learning_rate": {
|
61 |
+
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
63 |
+
},
|
64 |
+
"tensorboard_log": null,
|
65 |
+
"lr_schedule": {
|
66 |
+
":type:": "<class 'function'>",
|
67 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
68 |
+
},
|
69 |
+
"_last_obs": null,
|
70 |
+
"_last_episode_starts": null,
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gASV6gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNgDxGLPUudAz1oPx4/UtBIvTuExD4hCIC/+ENavpUMpD4AAIA/nRpWP1Cdx776aj0/6/9/PwAAAAD7PvE+VvzzPk+G/D6C9QU/MRosP84cPj8huFc/AACAPwAAgD8AAIA/lHSUYi4="
|
74 |
+
},
|
75 |
+
"_episode_num": 1852,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": 0.0,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylLr/QalckCUhpRSlIwBbJRN8gOMAXSUR0DY6hN/ustDdX2UKGgGaAloD0MIz2vsEpX4ckCUhpRSlGgVTdsDaBZHQNjtTCYCyQh1fZQoaAZoCWgPQwhb7swEg39yQJSGlFKUaBVNBARoFkdA2PCxWHUMHHV9lChoBmgJaA9DCAaE1sOXc3JAlIaUUpRoFU3qA2gWR0DY8+ZyU9pzdX2UKGgGaAloD0MIJ58e27LIckCUhpRSlGgVTfMDaBZHQNj3YQz1sch1fZQoaAZoCWgPQwiC4seYuxdzQJSGlFKUaBVNwANoFkdA2PpwrT6SDHV9lChoBmgJaA9DCLvTnScelnJAlIaUUpRoFU33A2gWR0DY/aJLdvbXdX2UKGgGaAloD0MI6C/0iBE/ckCUhpRSlGgVTU0EaBZHQNkFJLlijL11fZQoaAZoCWgPQwibO/pfrjVzQJSGlFKUaBVNrwNoFkdA2QhG8YyftnV9lChoBmgJaA9DCEzFxrzOx3JAlIaUUpRoFU3yA2gWR0DZC5g6dUbUdX2UKGgGaAloD0MI9rTDX5NdXUCUhpRSlGgVTdAHaBZHQNkSGQaJhv11fZQoaAZoCWgPQwgXZwxzwn9yQJSGlFKUaBVN8gNoFkdA2RVW+6iCa3V9lChoBmgJaA9DCJnxttJrynFAlIaUUpRoFU2bBGgWR0DZGSAxfv4NdX2UKGgGaAloD0MIahMn97t9ckCUhpRSlGgVTQ4EaBZHQNkcpki2Ujd1fZQoaAZoCWgPQwg/qmG/J643QJSGlFKUaBVNHgJoFkdA2R6AriEQG3V9lChoBmgJaA9DCHF1AMSdlnJAlIaUUpRoFU0QBGgWR0DZIgAPxx1gdX2UKGgGaAloD0MIqn8QyRDJckCUhpRSlGgVTe0DaBZHQNklVfgeii91fZQoaAZoCWgPQwireY7It7RyQJSGlFKUaBVN9QNoFkdA2SipxaPjn3V9lChoBmgJaA9DCI2ZRL1gU3JAlIaUUpRoFU0YBGgWR0DZLAfPC2tudX2UKGgGaAloD0MI29styYGSckCUhpRSlGgVTfkDaBZHQNkvTxsVLzx1fZQoaAZoCWgPQwjaqbncYHpyQJSGlFKUaBVNIwRoFkdA2TLaVqN6xHV9lChoBmgJaA9DCPHz34PXxnJAlIaUUpRoFU3eA2gWR0DZNiwg9vCNdX2UKGgGaAloD0MIXOMz2f/RckCUhpRSlGgVTdYDaBZHQNk5WoZ2pyZ1fZQoaAZoCWgPQwjCo40jlgNyQJSGlFKUaBVNRgRoFkdA2TzsW912aHV9lChoBmgJaA9DCMtkOJ7PR3JAlIaUUpRoFU09BGgWR0DZQIMWZZ0TdX2UKGgGaAloD0MIcxHfidliYUCUhpRSlGgVTZ8DaBZHQNlDmPZdv891fZQoaAZoCWgPQwjiH7b0qM9yQJSGlFKUaBVNzANoFkdA2Ubdrd30PHV9lChoBmgJaA9DCHWw/s8hmXJAlIaUUpRoFU3qA2gWR0DZShUlC1JEdX2UKGgGaAloD0MIpwhwehezY0CUhpRSlGgVTYgDaBZHQNlNDB0hePd1fZQoaAZoCWgPQwjT9q+stLVyQJSGlFKUaBVN5wNoFkdA2VBGN6gM+nV9lChoBmgJaA9DCEvK3ef4MkpAlIaUUpRoFU3QB2gWR0DZVvzRmbsodX2UKGgGaAloD0MInnk57L65ckCUhpRSlGgVTfgDaBZHQNlactoN/fB1fZQoaAZoCWgPQwil9iLajsdAwJSGlFKUaBVN0AdoFkdA2WDz1qnFYXV9lChoBmgJaA9DCOxP4nMn6nJAlIaUUpRoFU3KA2gWR0DZZBoy2x6fdX2UKGgGaAloD0MIzjRh+4nnckCUhpRSlGgVTcYDaBZHQNlnYcB+4LF1fZQoaAZoCWgPQwg9DK1OTrhyQJSGlFKUaBVN+QNoFkdA2Wq5al1r7HV9lChoBmgJaA9DCMk+yLKgr3JAlIaUUpRoFU3nA2gWR0DZbgNVZLZjdX2UKGgGaAloD0MIVRLZB1keUECUhpRSlGgVTcsCaBZHQNlwTaneizt1fZQoaAZoCWgPQwgzUu+pnJJyQJSGlFKUaBVN4wNoFkdA2XONXvH933V9lChoBmgJaA9DCJ5A2ClWCHJAlIaUUpRoFU04BGgWR0DZdx4cvM8pdX2UKGgGaAloD0MI0sPQ6iSXckCUhpRSlGgVTQgEaBZHQNl6jnj+7191fZQoaAZoCWgPQwjhRV9BGnlyQJSGlFKUaBVN9gNoFkdA2X36xDb8FnV9lChoBmgJaA9DCNqoTgfyO3JAlIaUUpRoFU08BGgWR0DZgWsn4O+adX2UKGgGaAloD0MIk+UklD5CckCUhpRSlGgVTVcEaBZHQNmE/iKvV3F1fZQoaAZoCWgPQwgAAAAAwJhyQJSGlFKUaBVNFwRoFkdA2YhMVIqb0HV9lChoBmgJaA9DCLLa/L9qfXJAlIaUUpRoFU0mBGgWR0DZi9M3bVSXdX2UKGgGaAloD0MIuwopP6naOUCUhpRSlGgVTdAHaBZHQNmSZAU1yeZ1fZQoaAZoCWgPQwjQXn089PhyQJSGlFKUaBVNsQNoFkdA2ZVj6Skj5nV9lChoBmgJaA9DCG2umueI2nJAlIaUUpRoFU3dA2gWR0DZmHXhZQpGdX2UKGgGaAloD0MIQSlauRfoTMCUhpRSlGgVTQQBaBZHQNmZRqvq1PZ1fZQoaAZoCWgPQwiLh/ccmHNyQJSGlFKUaBVNCgRoFkdA2ZyfuuRs/XV9lChoBmgJaA9DCAjlfRzNp1RAlIaUUpRoFU3QB2gWR0DZoxFXeWOZdX2UKGgGaAloD0MIeT4D6k12ckCUhpRSlGgVTT4EaBZHQNmmgS+L3sZ1fZQoaAZoCWgPQwgKo1nZfrxyQJSGlFKUaBVN+gNoFkdA2ayJOO8013V9lChoBmgJaA9DCD9xAP3+7HJAlIaUUpRoFU3eA2gWR0DZr8hj3EhrdX2UKGgGaAloD0MI7IoZ4e0nckCUhpRSlGgVTWAEaBZHQNmzfEr5IpZ1fZQoaAZoCWgPQwgXLquw2YxyQJSGlFKUaBVNCwRoFkdA2bbHqGUOeHV9lChoBmgJaA9DCMHJNnCHN3NAlIaUUpRoFU2nA2gWR0DZudCgYgq3dX2UKGgGaAloD0MI+kLIeX/JckCUhpRSlGgVTeQDaBZHQNm9AwYHgP51fZQoaAZoCWgPQwhtrS8S2iI7QJSGlFKUaBVN0AdoFkdA2cOv6vq1PXV9lChoBmgJaA9DCBEdAkeCfGpAlIaUUpRoFU3QB2gWR0DZylGu3c59dX2UKGgGaAloD0MI9dbAVgnEckCUhpRSlGgVTfgDaBZHQNnNjwMH8j11fZQoaAZoCWgPQwg0oUliyTdyQJSGlFKUaBVNPQRoFkdA2dEfiPhhpnV9lChoBmgJaA9DCKWCiqpfUUdAlIaUUpRoFU3QB2gWR0DZ16s85jpcdX2UKGgGaAloD0MIDLCPTl0fc0CUhpRSlGgVTb4DaBZHQNnaqvL1VYJ1fZQoaAZoCWgPQwiySumZ3nRyQJSGlFKUaBVN9wNoFkdA2d3S8aGYbHV9lChoBmgJaA9DCP5F0JhJWHJAlIaUUpRoFU07BGgWR0DZ4Vgdn004dX2UKGgGaAloD0MIx0s3iUGWckCUhpRSlGgVTe8DaBZHQNnkz+bd8At1fZQoaAZoCWgPQwiQZiyazhRyQJSGlFKUaBVNPwRoFkdA2eiaDm8ujHV9lChoBmgJaA9DCHWtvU+VwnJAlIaUUpRoFU33A2gWR0DZ7A7I0ZWJdX2UKGgGaAloD0MImYI1zuamckCUhpRSlGgVTQIEaBZHQNnvXJRbbDd1fZQoaAZoCWgPQwiEvYkhOalYwJSGlFKUaBVNMAFoFkdA2fBd/iYLLXV9lChoBmgJaA9DCGt+/KWFrHJAlIaUUpRoFU0bBGgWR0DZ89i3hGYsdX2UKGgGaAloD0MIMCqpE5DEckCUhpRSlGgVTeIDaBZHQNn3Dvgm7at1fZQoaAZoCWgPQwiUL2ghgcFyQJSGlFKUaBVN+wNoFkdA2fp150KZ2XV9lChoBmgJaA9DCCWt+IYC5nFAlIaUUpRoFU1WBGgWR0DZ/i8nSfDldX2UKGgGaAloD0MIG4S53YtVckCUhpRSlGgVTSgEaBZHQNoBrmXsw+N1fZQoaAZoCWgPQwhSmzi5H2dyQJSGlFKUaBVNLQRoFkdA2gUPDGcWkHV9lChoBmgJaA9DCDTZP08DgHJAlIaUUpRoFU0dBGgWR0DaCHY2R7qqdX2UKGgGaAloD0MIBcJOsWrYPcCUhpRSlGgVTUsBaBZHQNoJja7EpAl1fZQoaAZoCWgPQwgHliNk4IlyQJSGlFKUaBVN1QNoFkdA2gzGEal1sHV9lChoBmgJaA9DCLqHhO/99nJAlIaUUpRoFU3DA2gWR0DaD+bsRg7YdX2UKGgGaAloD0MIUmUYd4NCRECUhpRSlGgVTdAHaBZHQNoWUvzasZJ1fZQoaAZoCWgPQwjcKoiB7o1yQJSGlFKUaBVN/QNoFkdA2hmOt5UtI3V9lChoBmgJaA9DCJcDPdQ2XXJAlIaUUpRoFU0zBGgWR0DaHR9FuvU0dX2UKGgGaAloD0MIs+20NaKSckCUhpRSlGgVTScEaBZHQNogmzxLCep1fZQoaAZoCWgPQwgpCYm0TdByQJSGlFKUaBVNuQNoFkdA2iPV/zJ6p3V9lChoBmgJaA9DCFD9g0jGV3JAlIaUUpRoFU0uBGgWR0DaJ2NORDCxdX2UKGgGaAloD0MIppiDoKMAc0CUhpRSlGgVTbcDaBZHQNoqZDsdDIB1fZQoaAZoCWgPQwgBUTBjymJyQJSGlFKUaBVNNARoFkdA2i3hdwvQGHV9lChoBmgJaA9DCN20GafhOXJAlIaUUpRoFU1FBGgWR0DaMXWOMl1KdX2UKGgGaAloD0MImBQfnxDcckCUhpRSlGgVTcoDaBZHQNo0n4BNmDl1fZQoaAZoCWgPQwjlJ9U+HaNyQJSGlFKUaBVNAARoFkdA2jgK1YyO73V9lChoBmgJaA9DCGwkCcIVRXJAlIaUUpRoFU0gBGgWR0DaO4Z8ma6SdX2UKGgGaAloD0MI1TxH5PvkckCUhpRSlGgVTdsDaBZHQNo+ma0UoKF1fZQoaAZoCWgPQwjwv5Xs2DBOwJSGlFKUaBVNVQFoFkdA2j+8vaDf33V9lChoBmgJaA9DCFAcQL+vj3JAlIaUUpRoFU0TBGgWR0DaQysdT5wgdX2UKGgGaAloD0MI549pbRobckCUhpRSlGgVTVwEaBZHQNpGpxt52Qp1fZQoaAZoCWgPQwhyUS0iisVyQJSGlFKUaBVNBQRoFkdA2koM7mMfinV9lChoBmgJaA9DCNcUyOxsNHJAlIaUUpRoFU1UBGgWR0DaTYwdcSoPdWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 1990000,
|
88 |
+
"buffer_size": 1,
|
89 |
+
"batch_size": 256,
|
90 |
+
"learning_starts": 10000,
|
91 |
+
"tau": 0.01,
|
92 |
+
"gamma": 0.99,
|
93 |
+
"gradient_steps": 1,
|
94 |
+
"optimize_memory_usage": false,
|
95 |
+
"replay_buffer_class": {
|
96 |
+
":type:": "<class 'abc.ABCMeta'>",
|
97 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
98 |
+
"__module__": "stable_baselines3.common.buffers",
|
99 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
100 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f4246fd9b90>",
|
101 |
+
"add": "<function ReplayBuffer.add at 0x7f4246fd9c20>",
|
102 |
+
"sample": "<function ReplayBuffer.sample at 0x7f4246b407a0>",
|
103 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f4246b40830>",
|
104 |
+
"__abstractmethods__": "frozenset()",
|
105 |
+
"_abc_impl": "<_abc_data object at 0x7f42470315d0>"
|
106 |
+
},
|
107 |
+
"replay_buffer_kwargs": {},
|
108 |
+
"train_freq": {
|
109 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
110 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
111 |
+
},
|
112 |
+
"use_sde_at_warmup": false,
|
113 |
+
"target_entropy": -4.0,
|
114 |
+
"ent_coef": "auto",
|
115 |
+
"target_update_interval": 1,
|
116 |
+
"top_quantiles_to_drop_per_net": 2,
|
117 |
+
"_last_dones": {
|
118 |
+
":type:": "<class 'numpy.ndarray'>",
|
119 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
120 |
+
},
|
121 |
+
"remove_time_limit_termination": false
|
122 |
+
}
|
tqc-BipedalWalkerHardcore-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ea25e1d1eeb57a7adaf017a536cf1c9ed89204ea6577ead9429d94fa68f34ac
|
3 |
+
size 1255
|
tqc-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b176457dc78fb1448fdf61fd37d5763c0a13fcebbaec289e10b4319743ae988a
|
3 |
+
size 2772101
|
tqc-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66268f5e374c166d9491d8dfac783afa4002b53dcb9531a243274a2585caf116
|
3 |
+
size 747
|
tqc-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db65027e20a49be71aebf3413c75292cab138e31890dbdf006aea711fef9e4e1
|
3 |
+
size 61039
|