sbrzz commited on
Commit
09d5726
1 Parent(s): f736b3d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -0
README.md CHANGED
@@ -10,6 +10,16 @@ pipeline_tag: visual-question-answering
10
 
11
  Pretrain stage only, 4630 epochs
12
 
 
 
 
 
 
 
 
 
 
 
13
  | Category | # Samples | TP | FP | TN | FN | Accuracy | Precision | Recall | F1 Score | Yes Ratio |
14
  |-----------------|---------------|--------|--------|--------|--------|--------------|---------------|------------|--------------|---------------|
15
  | Adversarial | 3000 | 1312 | 1250 | 250 | 188 | 0.521 | 0.512 | 0.875 | 0.646 | 0.854 |
@@ -17,6 +27,14 @@ Pretrain stage only, 4630 epochs
17
  | Random | 2910 | 1312 | 1185 | 225 | 188 | 0.528 | 0.525 | 0.875 | 0.656 | 0.858 |
18
 
19
 
 
 
 
 
 
 
 
 
20
  [MMMU](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#mmmu)
21
 
22
  | Category | # Samples | Accuracy |
 
10
 
11
  Pretrain stage only, 4630 epochs
12
 
13
+ # Introduction
14
+
15
+ We use the powerful [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory) to create a super small image-text-to-text model.
16
+
17
+ The goal is to make it possible to run LLaVA models on edge devices (with few gigabytes of memory).
18
+
19
+ For LLM and vision tower, we choose [OpenELM-270M-Instruct](apple/OpenELM-270M-Instruct) and [facebook/dinov2-small](facebook/dinov2-small), respectively.
20
+
21
+ [POPE](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#pope):
22
+
23
  | Category | # Samples | TP | FP | TN | FN | Accuracy | Precision | Recall | F1 Score | Yes Ratio |
24
  |-----------------|---------------|--------|--------|--------|--------|--------------|---------------|------------|--------------|---------------|
25
  | Adversarial | 3000 | 1312 | 1250 | 250 | 188 | 0.521 | 0.512 | 0.875 | 0.646 | 0.854 |
 
27
  | Random | 2910 | 1312 | 1185 | 225 | 188 | 0.528 | 0.525 | 0.875 | 0.656 | 0.858 |
28
 
29
 
30
+ [TEXTVQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#textvqa)
31
+
32
+ Samples 5000, Accuracy 0% (:-|)
33
+
34
+ [SCIENCEQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#scienceqa)
35
+
36
+ Samples 4241, Correct: -, Accuracy: -%, IMG-Accuracy: -%
37
+
38
  [MMMU](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#mmmu)
39
 
40
  | Category | # Samples | Accuracy |