Update README.md
Browse files
README.md
CHANGED
@@ -128,7 +128,7 @@ The model is designed to predict safety labels across the following categories:
|
|
128 |
- **Model type:** Transformer Encoder
|
129 |
- **Language(s) (NLP):** Thai πΉπ and English π¬π§
|
130 |
- **License:** MIT
|
131 |
-
- **Finetuned from model
|
132 |
|
133 |
|
134 |
## How to Get Started with the Model
|
@@ -162,7 +162,7 @@ labels = predictions.argmax(dim=1).tolist()
|
|
162 |
scores = predictions.max(dim=1).values.tolist()
|
163 |
|
164 |
# Define label mapping
|
165 |
-
label_map = {0: "Unharm", 1: "
|
166 |
|
167 |
for text, label, score in zip(texts, labels, scores):
|
168 |
label_name = label_map[label]
|
|
|
128 |
- **Model type:** Transformer Encoder
|
129 |
- **Language(s) (NLP):** Thai πΉπ and English π¬π§
|
130 |
- **License:** MIT
|
131 |
+
- **Finetuned from model:** mDeBERTa v3 base https://huggingface.co/microsoft/mdeberta-v3-base
|
132 |
|
133 |
|
134 |
## How to Get Started with the Model
|
|
|
162 |
scores = predictions.max(dim=1).values.tolist()
|
163 |
|
164 |
# Define label mapping
|
165 |
+
label_map = {0: "Unharm", 1: "Harmful"}
|
166 |
|
167 |
for text, label, score in zip(texts, labels, scores):
|
168 |
label_name = label_map[label]
|