TeetouchQQ commited on
Commit
423eeb1
1 Parent(s): c75543a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -170
README.md CHANGED
@@ -7,7 +7,9 @@ tags: []
7
 
8
  Typhoon Safety Model
9
 
10
- Typhoon Safety is a lightweight binary classifier designed to detect harmful content in both English and Thai, with special attention to Thai cultural sensitivities. Built on mDeBERTa-v3.
 
 
11
 
12
  ### Thai Sensitive Topics Distribution
13
  | Category | English Samples | Thai Samples |
@@ -73,53 +75,12 @@ Typhoon Safety is a lightweight binary classifier designed to detect harmful con
73
  - **License:** [More Information Needed]
74
  - **Finetuned from model [optional]:** [More Information Needed]
75
 
76
- ### Model Sources [optional]
77
-
78
- <!-- Provide the basic links for the model. -->
79
-
80
- - **Repository:** [More Information Needed]
81
- - **Paper [optional]:** [More Information Needed]
82
- - **Demo [optional]:** [More Information Needed]
83
-
84
- ## Uses
85
-
86
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
87
-
88
- ### Direct Use
89
-
90
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
91
-
92
- [More Information Needed]
93
-
94
- ### Downstream Use [optional]
95
-
96
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
97
-
98
- [More Information Needed]
99
-
100
- ### Out-of-Scope Use
101
-
102
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Bias, Risks, and Limitations
107
-
108
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
109
-
110
- [More Information Needed]
111
-
112
- ### Recommendations
113
-
114
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
115
-
116
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
117
 
118
  ## How to Get Started with the Model
119
 
120
  Use the code below to get started with the model.
121
 
122
- ```
123
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
124
  import torch
125
 
@@ -152,130 +113,3 @@ for text, label, score in zip(texts, labels, scores):
152
  label_name = label_map[label]
153
  print(f"Text: {text}\nLabel: {label_name}, Score: {score:.4f}\n")
154
  ```
155
-
156
- [More Information Needed]
157
-
158
- ## Training Details
159
-
160
- ### Training Data
161
-
162
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
163
-
164
- [More Information Needed]
165
-
166
- ### Training Procedure
167
-
168
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
169
-
170
- #### Preprocessing [optional]
171
-
172
- [More Information Needed]
173
-
174
-
175
- #### Training Hyperparameters
176
-
177
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
178
-
179
- #### Speeds, Sizes, Times [optional]
180
-
181
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
182
-
183
- [More Information Needed]
184
-
185
- ## Evaluation
186
-
187
- <!-- This section describes the evaluation protocols and provides the results. -->
188
-
189
- ### Testing Data, Factors & Metrics
190
-
191
- #### Testing Data
192
-
193
- <!-- This should link to a Dataset Card if possible. -->
194
-
195
- [More Information Needed]
196
-
197
- #### Factors
198
-
199
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
200
-
201
- [More Information Needed]
202
-
203
- #### Metrics
204
-
205
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
206
-
207
- [More Information Needed]
208
-
209
- ### Results
210
-
211
- [More Information Needed]
212
-
213
- #### Summary
214
-
215
-
216
-
217
- ## Model Examination [optional]
218
-
219
- <!-- Relevant interpretability work for the model goes here -->
220
-
221
- [More Information Needed]
222
-
223
- ## Environmental Impact
224
-
225
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
226
-
227
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
228
-
229
- - **Hardware Type:** [More Information Needed]
230
- - **Hours used:** [More Information Needed]
231
- - **Cloud Provider:** [More Information Needed]
232
- - **Compute Region:** [More Information Needed]
233
- - **Carbon Emitted:** [More Information Needed]
234
-
235
- ## Technical Specifications [optional]
236
-
237
- ### Model Architecture and Objective
238
-
239
- [More Information Needed]
240
-
241
- ### Compute Infrastructure
242
-
243
- [More Information Needed]
244
-
245
- #### Hardware
246
-
247
- [More Information Needed]
248
-
249
- #### Software
250
-
251
- [More Information Needed]
252
-
253
- ## Citation [optional]
254
-
255
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
256
-
257
- **BibTeX:**
258
-
259
- [More Information Needed]
260
-
261
- **APA:**
262
-
263
- [More Information Needed]
264
-
265
- ## Glossary [optional]
266
-
267
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
268
-
269
- [More Information Needed]
270
-
271
- ## More Information [optional]
272
-
273
- [More Information Needed]
274
-
275
- ## Model Card Authors [optional]
276
-
277
- [More Information Needed]
278
-
279
- ## Model Card Contact
280
-
281
- [More Information Needed]
 
7
 
8
  Typhoon Safety Model
9
 
10
+ Typhoon Safety is a lightweight binary classifier designed to detect harmful content in both English and Thai, with special attention to Thai cultural sensitivities. Built on mDeBERTa-v3-base.
11
+
12
+ Train on mixed of Thai Sensitive topic dataset and Wildguard.
13
 
14
  ### Thai Sensitive Topics Distribution
15
  | Category | English Samples | Thai Samples |
 
75
  - **License:** [More Information Needed]
76
  - **Finetuned from model [optional]:** [More Information Needed]
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  ## How to Get Started with the Model
80
 
81
  Use the code below to get started with the model.
82
 
83
+ ```python
84
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
85
  import torch
86
 
 
113
  label_name = label_map[label]
114
  print(f"Text: {text}\nLabel: {label_name}, Score: {score:.4f}\n")
115
  ```