File size: 3,571 Bytes
e4b51b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d63f20b
 
 
 
 
 
 
 
e4b51b7
b900f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b51b7
b900f3a
e4b51b7
b900f3a
 
 
 
 
 
 
 
 
e4b51b7
b900f3a
 
 
e4b51b7
b900f3a
 
 
e4b51b7
b900f3a
 
 
e4b51b7
b900f3a
 
e4b51b7
b900f3a
 
 
 
e4b51b7
b900f3a
 
e4b51b7
b900f3a
e4b51b7
b900f3a
 
 
 
 
e4b51b7
b900f3a
e4b51b7
35c542c
 
 
e4b51b7
35c542c
 
e4b51b7
35c542c
 
 
e4b51b7
35c542c
 
 
 
e4b51b7
35c542c
 
 
e4b51b7
b900f3a
 
 
e4b51b7
b900f3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: mit
datasets:
- scfengv/TVL-game-layer-dataset
language:
- zh
metrics:
- accuracy
base_model:
- google-bert/bert-base-chinese
pipeline_tag: text-classification
tags:
- multi-label

model-index:
  - name: scfengv/TVL_GameLayerClassifier
    results:
      - task:
          type: multi-label text-classification
        dataset:
          name: scfengv/TVL-game-layer-dataset
          type: scfengv/TVL-game-layer-dataset
        metrics:
          - name: Accuracy
            type: Accuracy
            value: 0.985764
            
          - name: F1 score (Micro)
            type: F1 score (Micro)
            value: 0.993132

          - name: F1 score (Macro)
            type: F1 score (Macro)
            value: 0.993694
---
# Model Details of TVL_GameLayerClassifier

## Base Model
This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese).

## Model Architecture
- **Type**: BERT-based text classification model
- **Hidden Size**: 768
- **Number of Layers**: 12
- **Number of Attention Heads**: 12
- **Intermediate Size**: 3072
- **Max Sequence Length**: 512
- **Vocabulary Size**: 21,128

## Key Components
1. **Embeddings**
   - Word Embeddings
   - Position Embeddings
   - Token Type Embeddings
   - Layer Normalization

2. **Encoder**
   - 12 layers of:
     - Self-Attention Mechanism
     - Intermediate Dense Layer
     - Output Dense Layer
     - Layer Normalization

3. **Pooler**
   - Dense layer for sentence representation

4. **Classifier**
   - Output layer with 5 classes

## Training Hyperparameters

The model was trained using the following hyperparameters:

```
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
```

## Training Infrastructure

- **Hardware Type:** NVIDIA Quadro RTX8000
- **Library:** PyTorch
- **Hours used:** 2hr 13mins

## Model Parameters
- Total parameters: ~102M (estimated)
- All parameters are in 32-bit floating point (F32) format

## Input Processing
- Uses BERT tokenization
- Supports sequences up to 512 tokens

## Output
- 5-class multi-label classification

## Performance Metrics
- Accuracy score: 0.985764
- F1 score (Micro): 0.993132
- F1 score (Macro): 0.993694

## Training Dataset
This model was trained on the [scfengv/TVL-game-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-game-layer-dataset).

## Testing Dataset

- [scfengv/TVL-game-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-game-layer-dataset)
  - validation
  - Remove Emoji
  - Emoji2Desc
  - Remove Punctuation

## Usage

```python
import torch
from transformers import BertForSequenceClassification, BertTokenizer

model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GameLayerClassifier")
tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GameLayerClassifier")

# Prepare your text
text = "Your text here" ## Please refer to Dataset
inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)

# Make prediction
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.sigmoid(outputs.logits)

# Print predictions
print(predictions)
```

## Additional Notes
- This model is specifically designed for TVL Game layer classification tasks.
- It's based on the Chinese BERT model, indicating it's optimized for Chinese text.

For more detailed information about the model architecture or usage, please refer to the BERT documentation and the specific fine-tuning process used for this classifier.