File size: 3,571 Bytes
e4b51b7 d63f20b e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 b900f3a e4b51b7 35c542c e4b51b7 35c542c e4b51b7 35c542c e4b51b7 35c542c e4b51b7 35c542c e4b51b7 b900f3a e4b51b7 b900f3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: mit
datasets:
- scfengv/TVL-game-layer-dataset
language:
- zh
metrics:
- accuracy
base_model:
- google-bert/bert-base-chinese
pipeline_tag: text-classification
tags:
- multi-label
model-index:
- name: scfengv/TVL_GameLayerClassifier
results:
- task:
type: multi-label text-classification
dataset:
name: scfengv/TVL-game-layer-dataset
type: scfengv/TVL-game-layer-dataset
metrics:
- name: Accuracy
type: Accuracy
value: 0.985764
- name: F1 score (Micro)
type: F1 score (Micro)
value: 0.993132
- name: F1 score (Macro)
type: F1 score (Macro)
value: 0.993694
---
# Model Details of TVL_GameLayerClassifier
## Base Model
This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese).
## Model Architecture
- **Type**: BERT-based text classification model
- **Hidden Size**: 768
- **Number of Layers**: 12
- **Number of Attention Heads**: 12
- **Intermediate Size**: 3072
- **Max Sequence Length**: 512
- **Vocabulary Size**: 21,128
## Key Components
1. **Embeddings**
- Word Embeddings
- Position Embeddings
- Token Type Embeddings
- Layer Normalization
2. **Encoder**
- 12 layers of:
- Self-Attention Mechanism
- Intermediate Dense Layer
- Output Dense Layer
- Layer Normalization
3. **Pooler**
- Dense layer for sentence representation
4. **Classifier**
- Output layer with 5 classes
## Training Hyperparameters
The model was trained using the following hyperparameters:
```
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
```
## Training Infrastructure
- **Hardware Type:** NVIDIA Quadro RTX8000
- **Library:** PyTorch
- **Hours used:** 2hr 13mins
## Model Parameters
- Total parameters: ~102M (estimated)
- All parameters are in 32-bit floating point (F32) format
## Input Processing
- Uses BERT tokenization
- Supports sequences up to 512 tokens
## Output
- 5-class multi-label classification
## Performance Metrics
- Accuracy score: 0.985764
- F1 score (Micro): 0.993132
- F1 score (Macro): 0.993694
## Training Dataset
This model was trained on the [scfengv/TVL-game-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-game-layer-dataset).
## Testing Dataset
- [scfengv/TVL-game-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-game-layer-dataset)
- validation
- Remove Emoji
- Emoji2Desc
- Remove Punctuation
## Usage
```python
import torch
from transformers import BertForSequenceClassification, BertTokenizer
model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GameLayerClassifier")
tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GameLayerClassifier")
# Prepare your text
text = "Your text here" ## Please refer to Dataset
inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.sigmoid(outputs.logits)
# Print predictions
print(predictions)
```
## Additional Notes
- This model is specifically designed for TVL Game layer classification tasks.
- It's based on the Chinese BERT model, indicating it's optimized for Chinese text.
For more detailed information about the model architecture or usage, please refer to the BERT documentation and the specific fine-tuning process used for this classifier.
|