import torch import numpy as np from PIL import Image from skimage import io from ormbg import ORMBG import torch.nn.functional as F def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: if len(im.shape) < 3: im = im[:, :, np.newaxis] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) im_tensor = F.interpolate( torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" ).type(torch.uint8) image = torch.divide(im_tensor, 255.0) return image def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) im_array = np.squeeze(im_array) return im_array def example_inference(): image_path = "example.png" result_name = "no-background.png" net = ORMBG() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): net.load_state_dict(torch.load("models/ormbg.pth")) net = net.cuda() else: net.load_state_dict(torch.load("models/ormbg.pth", map_location="cpu")) net.eval() model_input_size = [1024, 1024] orig_im = io.imread(image_path) orig_im_size = orig_im.shape[0:2] image = preprocess_image(orig_im, model_input_size).to(device) result = net(image) # post process result_image = postprocess_image(result[0][0], orig_im_size) # save result pil_im = Image.fromarray(result_image) no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) orig_image = Image.open(image_path) no_bg_image.paste(orig_image, mask=pil_im) no_bg_image.save(result_name) if __name__ == "__main__": example_inference()