Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +5 -2
- README.md +12 -8
- config.json +6 -7
- config_sentence_transformers.json +6 -4
- model.safetensors +2 -2
- sentence_bert_config.json +1 -1
- special_tokens_map.json +35 -5
- tokenizer.json +1 -1
- tokenizer_config.json +0 -9
1_Pooling/config.json
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
}
|
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
@@ -9,7 +10,7 @@ tags:
|
|
9 |
|
10 |
# {MODEL_NAME}
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -46,20 +47,23 @@ The model was trained with the parameters:
|
|
46 |
|
47 |
**DataLoader**:
|
48 |
|
49 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
50 |
```
|
51 |
-
{'batch_size':
|
52 |
```
|
53 |
|
54 |
**Loss**:
|
55 |
|
56 |
-
`sentence_transformers.losses.
|
|
|
|
|
|
|
57 |
|
58 |
Parameters of the fit()-Method:
|
59 |
```
|
60 |
{
|
61 |
"epochs": 1,
|
62 |
-
"evaluation_steps":
|
63 |
"evaluator": "NoneType",
|
64 |
"max_grad_norm": 1,
|
65 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
@@ -68,7 +72,7 @@ Parameters of the fit()-Method:
|
|
68 |
},
|
69 |
"scheduler": "WarmupLinear",
|
70 |
"steps_per_epoch": null,
|
71 |
-
"warmup_steps":
|
72 |
"weight_decay": 0.01
|
73 |
}
|
74 |
```
|
@@ -77,8 +81,8 @@ Parameters of the fit()-Method:
|
|
77 |
## Full Model Architecture
|
78 |
```
|
79 |
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length':
|
81 |
-
(1): Pooling({'word_embedding_dimension':
|
82 |
(2): Normalize()
|
83 |
)
|
84 |
```
|
|
|
1 |
---
|
2 |
+
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
|
|
10 |
|
11 |
# {MODEL_NAME}
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
|
|
47 |
|
48 |
**DataLoader**:
|
49 |
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 2918 with parameters:
|
51 |
```
|
52 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
```
|
54 |
|
55 |
**Loss**:
|
56 |
|
57 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
58 |
+
```
|
59 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
60 |
+
```
|
61 |
|
62 |
Parameters of the fit()-Method:
|
63 |
```
|
64 |
{
|
65 |
"epochs": 1,
|
66 |
+
"evaluation_steps": 0,
|
67 |
"evaluator": "NoneType",
|
68 |
"max_grad_norm": 1,
|
69 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
|
72 |
},
|
73 |
"scheduler": "WarmupLinear",
|
74 |
"steps_per_epoch": null,
|
75 |
+
"warmup_steps": 1000,
|
76 |
"weight_decay": 0.01
|
77 |
}
|
78 |
```
|
|
|
81 |
## Full Model Architecture
|
82 |
```
|
83 |
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
85 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
86 |
(2): Normalize()
|
87 |
)
|
88 |
```
|
config.json
CHANGED
@@ -1,25 +1,24 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
8 |
-
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size":
|
12 |
"initializer_range": 0.02,
|
13 |
-
"intermediate_size":
|
14 |
"layer_norm_eps": 1e-12,
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
17 |
-
"num_attention_heads":
|
18 |
-
"num_hidden_layers":
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "intfloat/e5-large-v2",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
"layer_norm_eps": 1e-12,
|
14 |
"max_position_embeddings": 512,
|
15 |
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "2.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "
|
6 |
-
}
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "2.6.1",
|
4 |
+
"transformers": "4.38.2",
|
5 |
+
"pytorch": "2.2.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e66b76709daa06fd805814c6f450dc4bed0fe803c3fcdd4aa1332bcbc50c84d
|
3 |
+
size 1340612432
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 512,
|
3 |
"do_lower_case": false
|
4 |
}
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
}
|
tokenizer.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
tokenizer_config.json
CHANGED
@@ -43,22 +43,13 @@
|
|
43 |
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
46 |
-
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
-
"max_length": 128,
|
50 |
"model_max_length": 512,
|
51 |
-
"never_split": null,
|
52 |
-
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
-
"pad_token_type_id": 0,
|
55 |
-
"padding_side": "right",
|
56 |
"sep_token": "[SEP]",
|
57 |
-
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
"tokenizer_class": "BertTokenizer",
|
61 |
-
"truncation_side": "right",
|
62 |
-
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]"
|
64 |
}
|
|
|
43 |
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
|
|
46 |
"do_lower_case": true,
|
47 |
"mask_token": "[MASK]",
|
|
|
48 |
"model_max_length": 512,
|
|
|
|
|
49 |
"pad_token": "[PAD]",
|
|
|
|
|
50 |
"sep_token": "[SEP]",
|
|
|
51 |
"strip_accents": null,
|
52 |
"tokenize_chinese_chars": true,
|
53 |
"tokenizer_class": "BertTokenizer",
|
|
|
|
|
54 |
"unk_token": "[UNK]"
|
55 |
}
|