sdadas's picture
Update README.md
7296f33 verified
|
raw
history blame
3.04 kB
---
pipeline_tag: text-classification
tags:
- transformers
- information-retrieval
language: pl
license: gemma
---
<h1 align="center">polish-reranker-roberta-v2</h1>
This is an improved version of reranker based on [sdadas/polish-roberta-large-v2](https://huggingface.co/sdadas/polish-roberta-large-v2) trained with [RankNet loss](https://icml.cc/Conferences/2015/wp-content/uploads/2015/06/icml_ranking.pdf) on a large dataset of text pairs.
The model was trained in the same way and on the same data as [sdadas/polish-reranker-large-ranknet](https://huggingface.co/sdadas/polish-reranker-large-ranknet), with the following improvements:
- We used predictions from [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) for distillation instead of [unicamp-dl/mt5-13b-mmarco-100k](https://huggingface.co/unicamp-dl/mt5-13b-mmarco-100k).
- We used a custom implementation of the RoBERTa model with support for Flash Attention 2. If you want to use these features, load the model with the arguments `trust_remote_code=True` and `attn_implementation="flash_attention_2"`.
Our reranker achieves results close to [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) on the PIRB benchmark, even outperforming it on some datasets. At the same time, it is over 21 times smaller — 435M vs. 9.24B parameters.
## Usage (Huggingface Transformers)
The model can be used with Huggingface Transformers in the following way:
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
query = "Jak dożyć 100 lat?"
answers = [
"Trzeba zdrowo się odżywiać i uprawiać sport.",
"Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
"Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model_name = "sdadas/polish-reranker-roberta-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="cuda"
)
texts = [f"{query}</s></s>{answer}" for answer in answers]
tokens = tokenizer(texts, padding="longest", max_length=512, truncation=True, return_tensors="pt").to("cuda")
output = model(**tokens)
results = output.logits.detach().cpu().float().numpy()
results = np.squeeze(results)
print(results.tolist())
```
## Evaluation Results
The model achieves **NDCG@10** of **65.30** in the Rerankers category of the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.
## Citation
```bibtex
@article{dadas2024assessing,
title={Assessing generalization capability of text ranking models in Polish},
author={Sławomir Dadas and Małgorzata Grębowiec},
year={2024},
eprint={2402.14318},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```