Delete configuration_roberta.py
Browse files- configuration_roberta.py +0 -151
configuration_roberta.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
-
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
""" RoBERTa configuration"""
|
17 |
-
from collections import OrderedDict
|
18 |
-
from typing import Mapping
|
19 |
-
|
20 |
-
from transformers import PretrainedConfig
|
21 |
-
from transformers.onnx import OnnxConfig
|
22 |
-
from transformers.utils import logging
|
23 |
-
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
|
28 |
-
class RobertaConfig(PretrainedConfig):
|
29 |
-
r"""
|
30 |
-
This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
|
31 |
-
used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
|
32 |
-
Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
|
33 |
-
[FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) architecture.
|
34 |
-
|
35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
-
documentation from [`PretrainedConfig`] for more information.
|
37 |
-
|
38 |
-
|
39 |
-
Args:
|
40 |
-
vocab_size (`int`, *optional*, defaults to 50265):
|
41 |
-
Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by the
|
42 |
-
`inputs_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
|
43 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
-
Dimensionality of the encoder layers and the pooler layer.
|
45 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
46 |
-
Number of hidden layers in the Transformer encoder.
|
47 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
51 |
-
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
52 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
-
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
54 |
-
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
55 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
-
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
-
The dropout ratio for the attention probabilities.
|
58 |
-
max_position_embeddings (`int`, *optional*, defaults to 512):
|
59 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
60 |
-
just in case (e.g., 512 or 1024 or 2048).
|
61 |
-
type_vocab_size (`int`, *optional*, defaults to 2):
|
62 |
-
The vocabulary size of the `token_type_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
|
63 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
66 |
-
The epsilon used by the layer normalization layers.
|
67 |
-
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
68 |
-
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
69 |
-
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
70 |
-
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
71 |
-
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
72 |
-
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
73 |
-
is_decoder (`bool`, *optional*, defaults to `False`):
|
74 |
-
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
75 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
-
relevant if `config.is_decoder=True`.
|
78 |
-
classifier_dropout (`float`, *optional*):
|
79 |
-
The dropout ratio for the classification head.
|
80 |
-
|
81 |
-
Examples:
|
82 |
-
|
83 |
-
```python
|
84 |
-
>>> from transformers import RobertaConfig, RobertaModel
|
85 |
-
|
86 |
-
>>> # Initializing a RoBERTa configuration
|
87 |
-
>>> configuration = RobertaConfig()
|
88 |
-
|
89 |
-
>>> # Initializing a model (with random weights) from the configuration
|
90 |
-
>>> model = RobertaModel(configuration)
|
91 |
-
|
92 |
-
>>> # Accessing the model configuration
|
93 |
-
>>> configuration = model.config
|
94 |
-
```"""
|
95 |
-
|
96 |
-
model_type = "roberta"
|
97 |
-
|
98 |
-
def __init__(
|
99 |
-
self,
|
100 |
-
vocab_size=50265,
|
101 |
-
hidden_size=768,
|
102 |
-
num_hidden_layers=12,
|
103 |
-
num_attention_heads=12,
|
104 |
-
intermediate_size=3072,
|
105 |
-
hidden_act="gelu",
|
106 |
-
hidden_dropout_prob=0.1,
|
107 |
-
attention_probs_dropout_prob=0.1,
|
108 |
-
max_position_embeddings=512,
|
109 |
-
type_vocab_size=2,
|
110 |
-
initializer_range=0.02,
|
111 |
-
layer_norm_eps=1e-12,
|
112 |
-
pad_token_id=1,
|
113 |
-
bos_token_id=0,
|
114 |
-
eos_token_id=2,
|
115 |
-
position_embedding_type="absolute",
|
116 |
-
use_cache=True,
|
117 |
-
classifier_dropout=None,
|
118 |
-
**kwargs,
|
119 |
-
):
|
120 |
-
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
121 |
-
|
122 |
-
self.vocab_size = vocab_size
|
123 |
-
self.hidden_size = hidden_size
|
124 |
-
self.num_hidden_layers = num_hidden_layers
|
125 |
-
self.num_attention_heads = num_attention_heads
|
126 |
-
self.hidden_act = hidden_act
|
127 |
-
self.intermediate_size = intermediate_size
|
128 |
-
self.hidden_dropout_prob = hidden_dropout_prob
|
129 |
-
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
130 |
-
self.max_position_embeddings = max_position_embeddings
|
131 |
-
self.type_vocab_size = type_vocab_size
|
132 |
-
self.initializer_range = initializer_range
|
133 |
-
self.layer_norm_eps = layer_norm_eps
|
134 |
-
self.position_embedding_type = position_embedding_type
|
135 |
-
self.use_cache = use_cache
|
136 |
-
self.classifier_dropout = classifier_dropout
|
137 |
-
|
138 |
-
|
139 |
-
class RobertaOnnxConfig(OnnxConfig):
|
140 |
-
@property
|
141 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
142 |
-
if self.task == "multiple-choice":
|
143 |
-
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
144 |
-
else:
|
145 |
-
dynamic_axis = {0: "batch", 1: "sequence"}
|
146 |
-
return OrderedDict(
|
147 |
-
[
|
148 |
-
("input_ids", dynamic_axis),
|
149 |
-
("attention_mask", dynamic_axis),
|
150 |
-
]
|
151 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|