sdadas commited on
Commit
9027951
1 Parent(s): 46cf0fa

Delete configuration_roberta.py

Browse files
Files changed (1) hide show
  1. configuration_roberta.py +0 -151
configuration_roberta.py DELETED
@@ -1,151 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- """ RoBERTa configuration"""
17
- from collections import OrderedDict
18
- from typing import Mapping
19
-
20
- from transformers import PretrainedConfig
21
- from transformers.onnx import OnnxConfig
22
- from transformers.utils import logging
23
-
24
-
25
- logger = logging.get_logger(__name__)
26
-
27
-
28
- class RobertaConfig(PretrainedConfig):
29
- r"""
30
- This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
31
- used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
32
- Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
33
- [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) architecture.
34
-
35
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
- documentation from [`PretrainedConfig`] for more information.
37
-
38
-
39
- Args:
40
- vocab_size (`int`, *optional*, defaults to 50265):
41
- Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by the
42
- `inputs_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
43
- hidden_size (`int`, *optional*, defaults to 768):
44
- Dimensionality of the encoder layers and the pooler layer.
45
- num_hidden_layers (`int`, *optional*, defaults to 12):
46
- Number of hidden layers in the Transformer encoder.
47
- num_attention_heads (`int`, *optional*, defaults to 12):
48
- Number of attention heads for each attention layer in the Transformer encoder.
49
- intermediate_size (`int`, *optional*, defaults to 3072):
50
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
51
- hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
52
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
53
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
54
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
55
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
56
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
57
- The dropout ratio for the attention probabilities.
58
- max_position_embeddings (`int`, *optional*, defaults to 512):
59
- The maximum sequence length that this model might ever be used with. Typically set this to something large
60
- just in case (e.g., 512 or 1024 or 2048).
61
- type_vocab_size (`int`, *optional*, defaults to 2):
62
- The vocabulary size of the `token_type_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
63
- initializer_range (`float`, *optional*, defaults to 0.02):
64
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
66
- The epsilon used by the layer normalization layers.
67
- position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
68
- Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
69
- positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
70
- [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
71
- For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
72
- with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
73
- is_decoder (`bool`, *optional*, defaults to `False`):
74
- Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
75
- use_cache (`bool`, *optional*, defaults to `True`):
76
- Whether or not the model should return the last key/values attentions (not used by all models). Only
77
- relevant if `config.is_decoder=True`.
78
- classifier_dropout (`float`, *optional*):
79
- The dropout ratio for the classification head.
80
-
81
- Examples:
82
-
83
- ```python
84
- >>> from transformers import RobertaConfig, RobertaModel
85
-
86
- >>> # Initializing a RoBERTa configuration
87
- >>> configuration = RobertaConfig()
88
-
89
- >>> # Initializing a model (with random weights) from the configuration
90
- >>> model = RobertaModel(configuration)
91
-
92
- >>> # Accessing the model configuration
93
- >>> configuration = model.config
94
- ```"""
95
-
96
- model_type = "roberta"
97
-
98
- def __init__(
99
- self,
100
- vocab_size=50265,
101
- hidden_size=768,
102
- num_hidden_layers=12,
103
- num_attention_heads=12,
104
- intermediate_size=3072,
105
- hidden_act="gelu",
106
- hidden_dropout_prob=0.1,
107
- attention_probs_dropout_prob=0.1,
108
- max_position_embeddings=512,
109
- type_vocab_size=2,
110
- initializer_range=0.02,
111
- layer_norm_eps=1e-12,
112
- pad_token_id=1,
113
- bos_token_id=0,
114
- eos_token_id=2,
115
- position_embedding_type="absolute",
116
- use_cache=True,
117
- classifier_dropout=None,
118
- **kwargs,
119
- ):
120
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
121
-
122
- self.vocab_size = vocab_size
123
- self.hidden_size = hidden_size
124
- self.num_hidden_layers = num_hidden_layers
125
- self.num_attention_heads = num_attention_heads
126
- self.hidden_act = hidden_act
127
- self.intermediate_size = intermediate_size
128
- self.hidden_dropout_prob = hidden_dropout_prob
129
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
130
- self.max_position_embeddings = max_position_embeddings
131
- self.type_vocab_size = type_vocab_size
132
- self.initializer_range = initializer_range
133
- self.layer_norm_eps = layer_norm_eps
134
- self.position_embedding_type = position_embedding_type
135
- self.use_cache = use_cache
136
- self.classifier_dropout = classifier_dropout
137
-
138
-
139
- class RobertaOnnxConfig(OnnxConfig):
140
- @property
141
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
142
- if self.task == "multiple-choice":
143
- dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
144
- else:
145
- dynamic_axis = {0: "batch", 1: "sequence"}
146
- return OrderedDict(
147
- [
148
- ("input_ids", dynamic_axis),
149
- ("attention_mask", dynamic_axis),
150
- ]
151
- )