--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: pl license: gemma widget: - source_sentence: "zapytanie: Jak dożyć 100 lat?" sentences: - "Trzeba zdrowo się odżywiać i uprawiać sport." - "Trzeba pić alkohol, imprezować i jeździć szybkimi autami." - "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." ---

Stella-PL-retrieval

This is a text encoder based on [stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) and further fine-tuned for Polish information retrieval tasks. - In the first step, we adapted the model for Polish with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) using a diverse corpus of 20 million Polish-English text pairs. - The second step involved fine-tuning the model with contrastrive loss using a dataset consisting of 1.4 million queries. Positive and negative passages for each query have been selected with the help of [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) reranker. The model was trained for three epochs with a batch size of 1024 queries. The encoder transforms texts to 1024 dimensional vectors. The model is optimized specifically for Polish information retrieval tasks. If you need a more versatile encoder, suitable for a wider range of tasks such as semantic similarity or clustering, you probably use the distilled version from the first step: [sdadas/stella-pl](https://huggingface.co/sdadas/stella-pl). ## Usage (Sentence-Transformers) The model utilizes the same prompts as the original [stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5). For retrieval, queries should be prefixed with **"Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "**. For symmetric tasks such as semantic similarity, both texts should be prefixed with **"Instruct: Retrieve semantically similar text.\nQuery: "**. Please note that the model uses a custom implementation, so you should add `trust_remote_code=True` argument when loading it. It is also recommended to use Flash Attention 2, which can be enabled with `attn_implementation` argument. You can use the model like this with [sentence-transformers](https://www.SBERT.net): ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( "sdadas/stella-pl-retrieval", trust_remote_code=True, device="cuda", model_kwargs={"attn_implementation": "flash_attention_2", "trust_remote_code": True} ) model.bfloat16() # Retrieval example query_prefix = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " queries = [query_prefix + "Jak dożyć 100 lat?"] answers = [ "Trzeba zdrowo się odżywiać i uprawiać sport.", "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.", "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." ] queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False) answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False) best_answer = cos_sim(queries_emb, answers_emb).argmax().item() print(answers[best_answer]) # Semantic similarity example sim_prefix = "Instruct: Retrieve semantically similar text.\nQuery: " sentences = [ sim_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.", sim_prefix + "Warto jest prowadzić zdrowy tryb życia, uwzględniający aktywność fizyczną i dietę.", sim_prefix + "One should eat healthy and engage in sports.", sim_prefix + "Zakupy potwierdzasz PINem, który bezpiecznie ustalisz podczas aktywacji." ] emb = model.encode(sentences, convert_to_tensor=True, show_progress_bar=False) print(cos_sim(emb, emb)) ``` ## Evaluation Results The model achieves **NDCG@10** of **62.32** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results. ## Citation ```bibtex @article{dadas2024pirb, title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods}, author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata}, year={2024}, eprint={2402.13350}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```