sderev/PPO-LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 299.97 +/- 20.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f10d66a4c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10d66a4ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10d66a4d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10d66a4dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f10d66a4e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f10d66a4ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f10d66a4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10d66a7040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f10d66a70d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10d66a7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10d66a71f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10d66a7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f10d66a07e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673604246212368688, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPxM74PkH0/w1tfvnrXGb+Gk+O+K5mLvQAAAAAAAAAA5ts8PvVPmD++Y/U+mZQTvy3DzD5555A+AAAAAAAAAABNqBk9QxNpvHZJzrwg1MA7JFnMPWYOqrwAAIA/AACAPzMBCz0UgqC6MoGOvKcjujznOyo76FChvQAAgD8AAIA/M3TCPAXhp7tSJpM6r/SUPEnqAb0dlHw9AACAPwAAgD/N0lu9vOYdPmba8D2Q8Bu/Aer/vU5qGj4AAAAAAAAAAIC0Yz1SjJE6km15vrfTI74iDWK9YsiCPwAAgD8AAAAAVQOPvrbneD8G31W+orEgvy40Pb+byS29AAAAAAAAAAAAKII7NS4WPxPyEz2ThUK/Vm8pvYKwHjwAAAAAAAAAAEawI74d9VM+QqzRPqtaGL+t+r696K2fPgAAAAAAAAAAmjlYPPbUfLp69RM9A7qiPCsBzruupow9AACAPwAAgD+aIwu9qSdUvLC65zrlF8A84wO4vemYmj0AAIA/AACAP1qXMz7MuK0+WGyovkn/Db9LHPY9D1KEvgAAAAAAAAAAzVOYvNLjsDxwXh0+8pHHvqxMRLuApCw+AAAAAAAAAADNjKe8TmWzPyJ//r4W4xO+R0MwPOqmdLwAAAAAAAAAAJpCNT7iz7o/5FYGP+B4sb7imsk+dHydPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUUtzK0R1cUCUhpRSlIwBbJRLpYwBdJRHQLpB0cAzYVZ1fZQoaAZoCWgPQwgea0YG+VZyQJSGlFKUaBVLuGgWR0C6QeUKiO/+dX2UKGgGaAloD0MIAFMGDmhgcECUhpRSlGgVS7doFkdAukHpPXTVlXV9lChoBmgJaA9DCKjHtgy4ZnNAlIaUUpRoFUukaBZHQLpB62qT8pF1fZQoaAZoCWgPQwg2P/7SYlZyQJSGlFKUaBVLzGgWR0C6Qeu3pfQbdX2UKGgGaAloD0MIOZojK78zc0CUhpRSlGgVS7VoFkdAukIRVlwtKHV9lChoBmgJaA9DCFwhrMYSc3NAlIaUUpRoFUuyaBZHQLpCIfdyksV1fZQoaAZoCWgPQwhKYkm5e6FuQJSGlFKUaBVLnWgWR0C6QjkdaMaTdX2UKGgGaAloD0MIXFX2XZHzcUCUhpRSlGgVS59oFkdAukbwMgEEDHV9lChoBmgJaA9DCKSoM/eQvXBAlIaUUpRoFUufaBZHQLpG9bpu/Dd1fZQoaAZoCWgPQwhdUN8yJ3B0QJSGlFKUaBVLsWgWR0C6RyAjUutfdX2UKGgGaAloD0MIogkUsYjRcUCUhpRSlGgVS8ZoFkdAukcpTtLL6nV9lChoBmgJaA9DCNfdPNUhCHNAlIaUUpRoFUvjaBZHQLpHLH6Mzdl1fZQoaAZoCWgPQwhkWTDxB5dyQJSGlFKUaBVLyWgWR0C6RzQBcRlIdX2UKGgGaAloD0MIp+uJrgs9ckCUhpRSlGgVS9NoFkdAukc34qPOp3V9lChoBmgJaA9DCBpSRfHqJHBAlIaUUpRoFUuvaBZHQLpHPMINVip1fZQoaAZoCWgPQwh3vMlv0SVzQJSGlFKUaBVLsmgWR0C6Rz7O/tY0dX2UKGgGaAloD0MIXio25vWEcUCUhpRSlGgVS55oFkdAukdFrgwXZXV9lChoBmgJaA9DCBnnb0Jh6nJAlIaUUpRoFUuwaBZHQLpHVn/1g6V1fZQoaAZoCWgPQwgl6gWf5qJwQJSGlFKUaBVLyWgWR0C6R246CDmKdX2UKGgGaAloD0MIz4b8MwNJdECUhpRSlGgVS9FoFkdAukdyYiPhh3V9lChoBmgJaA9DCNs1Ia0xM3FAlIaUUpRoFUuraBZHQLpHdhwEQoV1fZQoaAZoCWgPQwhdbcX+snVxQJSGlFKUaBVLsGgWR0C6R4mITGo8dX2UKGgGaAloD0MILQWk/Q8cckCUhpRSlGgVS6doFkdAukeUKBun/HV9lChoBmgJaA9DCIzbaADvM3FAlIaUUpRoFUudaBZHQLpHmoCuEEl1fZQoaAZoCWgPQwgEHEKVWm9xQJSGlFKUaBVLpGgWR0C6R5xz/6wddX2UKGgGaAloD0MIPPpfroXRcECUhpRSlGgVS7BoFkdAukfWhtcfNnV9lChoBmgJaA9DCA9+4gD6EHJAlIaUUpRoFUuxaBZHQLpH5CVrylN1fZQoaAZoCWgPQwjvHqD7cu9zQJSGlFKUaBVLtmgWR0C6R+cLF4s3dX2UKGgGaAloD0MIsryrHjDUcUCUhpRSlGgVS6NoFkdAukfmdf9gnnV9lChoBmgJaA9DCJ1/u+wXmHBAlIaUUpRoFUuwaBZHQLpH7xkd3jd1fZQoaAZoCWgPQwicTrLVJWVxQJSGlFKUaBVLuGgWR0C6R/RL9MsZdX2UKGgGaAloD0MI3XwjuufpcUCUhpRSlGgVS7VoFkdAukgCvKU3XXV9lChoBmgJaA9DCLhbkgM2vHJAlIaUUpRoFUutaBZHQLpIDLBsQ/Z1fZQoaAZoCWgPQwi86gHz0Jp0QJSGlFKUaBVLx2gWR0C6SA/R7Z3+dX2UKGgGaAloD0MIyT7IsiCvcUCUhpRSlGgVS51oFkdAukgX114gR3V9lChoBmgJaA9DCLwIU5TLhXFAlIaUUpRoFUu1aBZHQLpIK1HOKO11fZQoaAZoCWgPQwg3picsMWhxQJSGlFKUaBVLw2gWR0C6SEJ5u63BdX2UKGgGaAloD0MIinWqfM8EckCUhpRSlGgVS6doFkdAukhE77sOXnV9lChoBmgJaA9DCA0bZf1mInFAlIaUUpRoFUupaBZHQLpITkWAPNF1fZQoaAZoCWgPQwiw5ZXrLbJzQJSGlFKUaBVLrGgWR0C6SFPRZ2ZBdX2UKGgGaAloD0MIUz2ZfzQNckCUhpRSlGgVS8RoFkdAukhYliSaE3V9lChoBmgJaA9DCPSkTGpoW0JAlIaUUpRoFUtqaBZHQLpIcKYRdyF1fZQoaAZoCWgPQwihoBSt3CFxQJSGlFKUaBVLomgWR0C6SJDq0MPSdX2UKGgGaAloD0MIKnKIuHkjckCUhpRSlGgVS6FoFkdAukiYmMOwxHV9lChoBmgJaA9DCOLLRBFSzHBAlIaUUpRoFUuqaBZHQLpImEWIoE11fZQoaAZoCWgPQwit+fGXVnByQJSGlFKUaBVLvGgWR0C6SJ8Md92HdX2UKGgGaAloD0MIgZauYNsJc0CUhpRSlGgVS5hoFkdAukixVlwtKHV9lChoBmgJaA9DCAq7KHog4HFAlIaUUpRoFUufaBZHQLpItel9Brx1fZQoaAZoCWgPQwha9E4FXNRxQJSGlFKUaBVLmmgWR0C6SL0IX0oSdX2UKGgGaAloD0MI6KG2DeN0c0CUhpRSlGgVS9BoFkdAukjFpM6BAnV9lChoBmgJaA9DCFt6NNUTcnJAlIaUUpRoFUuiaBZHQLpI82Ifr8l1fZQoaAZoCWgPQwgCEHf1qppwQJSGlFKUaBVLrmgWR0C6SQRBNVR2dX2UKGgGaAloD0MIzEBl/PsocECUhpRSlGgVS8VoFkdAukkDYpUgjnV9lChoBmgJaA9DCIKrPIFwyXFAlIaUUpRoFUuyaBZHQLpJElyBCld1fZQoaAZoCWgPQwhD4h5Ln/pxQJSGlFKUaBVLsWgWR0C6SRc/D+BIdX2UKGgGaAloD0MIN/qYD0iscECUhpRSlGgVS7toFkdAukkoVj7Q9nV9lChoBmgJaA9DCOW36GSpwHJAlIaUUpRoFUuPaBZHQLpJQD7Ikqt1fZQoaAZoCWgPQwgYzjXMEPRxQJSGlFKUaBVLo2gWR0C6SVI8EFGHdX2UKGgGaAloD0MIOiF00KWwckCUhpRSlGgVS8xoFkdAuklXIJZ4fXV9lChoBmgJaA9DCJmDoKNVCXJAlIaUUpRoFUuSaBZHQLpJY4VARkF1fZQoaAZoCWgPQwjTo6mezPhwQJSGlFKUaBVLoGgWR0C6SWfJJXhgdX2UKGgGaAloD0MI8db5t4t7cUCUhpRSlGgVS7loFkdAuklsyCWeH3V9lChoBmgJaA9DCNhJfVlaaHNAlIaUUpRoFUvMaBZHQLpJe3eN1hd1fZQoaAZoCWgPQwhEw2LU9exyQJSGlFKUaBVLxGgWR0C6SZbsa86FdX2UKGgGaAloD0MILdFZZtETcUCUhpRSlGgVS71oFkdAukmfL2YfGXV9lChoBmgJaA9DCBrggmzZaG9AlIaUUpRoFUunaBZHQLpJtMefZmJ1fZQoaAZoCWgPQwhfzmxX6GRzQJSGlFKUaBVNogFoFkdAuknFdX1an3V9lChoBmgJaA9DCKXcfY5PRXNAlIaUUpRoFUu0aBZHQLpJ1EYwZfl1fZQoaAZoCWgPQwiYaftXFj5xQJSGlFKUaBVLqmgWR0C6Sdw7PppwdX2UKGgGaAloD0MI0uRiDGwpc0CUhpRSlGgVS7BoFkdAukneW5YozHV9lChoBmgJaA9DCEmil1FsdXFAlIaUUpRoFUvQaBZHQLpJ8m+TNdJ1fZQoaAZoCWgPQwh5HtyddWtxQJSGlFKUaBVLsWgWR0C6SfLH6uW9dX2UKGgGaAloD0MIPx767lYfckCUhpRSlGgVS7JoFkdAukoKLWI42nV9lChoBmgJaA9DCHyeP21UY3BAlIaUUpRoFUvFaBZHQLpKLSG8Emp1fZQoaAZoCWgPQwjPEI5Zdl9yQJSGlFKUaBVLw2gWR0C6Si/MwDeTdX2UKGgGaAloD0MILO+qB4zVcECUhpRSlGgVS7xoFkdAuko0WP91l3V9lChoBmgJaA9DCH8xW7KqCHFAlIaUUpRoFUusaBZHQLpKOKDkELZ1fZQoaAZoCWgPQwj5LM+De5Z0QJSGlFKUaBVLwWgWR0C6SkIg3cYZdX2UKGgGaAloD0MIIlD9g8hLc0CUhpRSlGgVS8RoFkdAukpBi/fwZ3V9lChoBmgJaA9DCKBtNetMA3BAlIaUUpRoFUu0aBZHQLpKWWLP2PF1fZQoaAZoCWgPQwgomgewyOlzQJSGlFKUaBVLuWgWR0C6SmYChew+dX2UKGgGaAloD0MI3jr/dhmLcECUhpRSlGgVS6xoFkdAukpsK8cuJ3V9lChoBmgJaA9DCAMIH0r00nBAlIaUUpRoFUukaBZHQLpKf0Xxe9l1fZQoaAZoCWgPQwjpCrYRD25yQJSGlFKUaBVLvWgWR0C6Sou8brC4dX2UKGgGaAloD0MINIC3QML2cECUhpRSlGgVS6hoFkdAukqM/2TPjXV9lChoBmgJaA9DCOdtbHak3XNAlIaUUpRoFUu8aBZHQLpKnqBmPHV1fZQoaAZoCWgPQwhyMQbWcUByQJSGlFKUaBVLrmgWR0C6SqaAWi1zdX2UKGgGaAloD0MIJ0ut91ukcUCUhpRSlGgVS6RoFkdAukqzwhGH6HV9lChoBmgJaA9DCGJqSx1kVXFAlIaUUpRoFUu9aBZHQLpKtWa+evp1fZQoaAZoCWgPQwiv6qwW2K1wQJSGlFKUaBVLpmgWR0C6Stc32mHhdX2UKGgGaAloD0MIAaJgxpQbcECUhpRSlGgVS6JoFkdAukra+JxecHV9lChoBmgJaA9DCDV5ymp6Z3BAlIaUUpRoFUulaBZHQLpK2lU6xPh1fZQoaAZoCWgPQwh5AfbR6YpyQJSGlFKUaBVLuWgWR0C6SujL4etCdX2UKGgGaAloD0MIlQ1rKkuycECUhpRSlGgVS6poFkdAuksFDeCTU3V9lChoBmgJaA9DCGed8X2xNnJAlIaUUpRoFUvCaBZHQLpLBSBshxJ1fZQoaAZoCWgPQwhHPNnNzB5yQJSGlFKUaBVLy2gWR0C6Sw/+CK77dX2UKGgGaAloD0MILjcY6nA0ckCUhpRSlGgVS7FoFkdAuksbZIxxk3V9lChoBmgJaA9DCAsm/igqj3JAlIaUUpRoFUupaBZHQLpLGeiSJTF1fZQoaAZoCWgPQwgEkUWaOApxQJSGlFKUaBVLs2gWR0C6SzlC5VfedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792a489ec27169bab3b3553c310e225d162f4d732ca929c8e49a9bc331c6697c
|
3 |
+
size 147296
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f10d66a4c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10d66a4ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10d66a4d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10d66a4dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f10d66a4e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f10d66a4ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f10d66a4f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10d66a7040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f10d66a70d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10d66a7160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10d66a71f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10d66a7280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f10d66a07e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 10010624,
|
47 |
+
"_total_timesteps": 10000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673604246212368688,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPxM74PkH0/w1tfvnrXGb+Gk+O+K5mLvQAAAAAAAAAA5ts8PvVPmD++Y/U+mZQTvy3DzD5555A+AAAAAAAAAABNqBk9QxNpvHZJzrwg1MA7JFnMPWYOqrwAAIA/AACAPzMBCz0UgqC6MoGOvKcjujznOyo76FChvQAAgD8AAIA/M3TCPAXhp7tSJpM6r/SUPEnqAb0dlHw9AACAPwAAgD/N0lu9vOYdPmba8D2Q8Bu/Aer/vU5qGj4AAAAAAAAAAIC0Yz1SjJE6km15vrfTI74iDWK9YsiCPwAAgD8AAAAAVQOPvrbneD8G31W+orEgvy40Pb+byS29AAAAAAAAAAAAKII7NS4WPxPyEz2ThUK/Vm8pvYKwHjwAAAAAAAAAAEawI74d9VM+QqzRPqtaGL+t+r696K2fPgAAAAAAAAAAmjlYPPbUfLp69RM9A7qiPCsBzruupow9AACAPwAAgD+aIwu9qSdUvLC65zrlF8A84wO4vemYmj0AAIA/AACAP1qXMz7MuK0+WGyovkn/Db9LHPY9D1KEvgAAAAAAAAAAzVOYvNLjsDxwXh0+8pHHvqxMRLuApCw+AAAAAAAAAADNjKe8TmWzPyJ//r4W4xO+R0MwPOqmdLwAAAAAAAAAAJpCNT7iz7o/5FYGP+B4sb7imsk+dHydPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUUtzK0R1cUCUhpRSlIwBbJRLpYwBdJRHQLpB0cAzYVZ1fZQoaAZoCWgPQwgea0YG+VZyQJSGlFKUaBVLuGgWR0C6QeUKiO/+dX2UKGgGaAloD0MIAFMGDmhgcECUhpRSlGgVS7doFkdAukHpPXTVlXV9lChoBmgJaA9DCKjHtgy4ZnNAlIaUUpRoFUukaBZHQLpB62qT8pF1fZQoaAZoCWgPQwg2P/7SYlZyQJSGlFKUaBVLzGgWR0C6Qeu3pfQbdX2UKGgGaAloD0MIOZojK78zc0CUhpRSlGgVS7VoFkdAukIRVlwtKHV9lChoBmgJaA9DCFwhrMYSc3NAlIaUUpRoFUuyaBZHQLpCIfdyksV1fZQoaAZoCWgPQwhKYkm5e6FuQJSGlFKUaBVLnWgWR0C6QjkdaMaTdX2UKGgGaAloD0MIXFX2XZHzcUCUhpRSlGgVS59oFkdAukbwMgEEDHV9lChoBmgJaA9DCKSoM/eQvXBAlIaUUpRoFUufaBZHQLpG9bpu/Dd1fZQoaAZoCWgPQwhdUN8yJ3B0QJSGlFKUaBVLsWgWR0C6RyAjUutfdX2UKGgGaAloD0MIogkUsYjRcUCUhpRSlGgVS8ZoFkdAukcpTtLL6nV9lChoBmgJaA9DCNfdPNUhCHNAlIaUUpRoFUvjaBZHQLpHLH6Mzdl1fZQoaAZoCWgPQwhkWTDxB5dyQJSGlFKUaBVLyWgWR0C6RzQBcRlIdX2UKGgGaAloD0MIp+uJrgs9ckCUhpRSlGgVS9NoFkdAukc34qPOp3V9lChoBmgJaA9DCBpSRfHqJHBAlIaUUpRoFUuvaBZHQLpHPMINVip1fZQoaAZoCWgPQwh3vMlv0SVzQJSGlFKUaBVLsmgWR0C6Rz7O/tY0dX2UKGgGaAloD0MIXio25vWEcUCUhpRSlGgVS55oFkdAukdFrgwXZXV9lChoBmgJaA9DCBnnb0Jh6nJAlIaUUpRoFUuwaBZHQLpHVn/1g6V1fZQoaAZoCWgPQwgl6gWf5qJwQJSGlFKUaBVLyWgWR0C6R246CDmKdX2UKGgGaAloD0MIz4b8MwNJdECUhpRSlGgVS9FoFkdAukdyYiPhh3V9lChoBmgJaA9DCNs1Ia0xM3FAlIaUUpRoFUuraBZHQLpHdhwEQoV1fZQoaAZoCWgPQwhdbcX+snVxQJSGlFKUaBVLsGgWR0C6R4mITGo8dX2UKGgGaAloD0MILQWk/Q8cckCUhpRSlGgVS6doFkdAukeUKBun/HV9lChoBmgJaA9DCIzbaADvM3FAlIaUUpRoFUudaBZHQLpHmoCuEEl1fZQoaAZoCWgPQwgEHEKVWm9xQJSGlFKUaBVLpGgWR0C6R5xz/6wddX2UKGgGaAloD0MIPPpfroXRcECUhpRSlGgVS7BoFkdAukfWhtcfNnV9lChoBmgJaA9DCA9+4gD6EHJAlIaUUpRoFUuxaBZHQLpH5CVrylN1fZQoaAZoCWgPQwjvHqD7cu9zQJSGlFKUaBVLtmgWR0C6R+cLF4s3dX2UKGgGaAloD0MIsryrHjDUcUCUhpRSlGgVS6NoFkdAukfmdf9gnnV9lChoBmgJaA9DCJ1/u+wXmHBAlIaUUpRoFUuwaBZHQLpH7xkd3jd1fZQoaAZoCWgPQwicTrLVJWVxQJSGlFKUaBVLuGgWR0C6R/RL9MsZdX2UKGgGaAloD0MI3XwjuufpcUCUhpRSlGgVS7VoFkdAukgCvKU3XXV9lChoBmgJaA9DCLhbkgM2vHJAlIaUUpRoFUutaBZHQLpIDLBsQ/Z1fZQoaAZoCWgPQwi86gHz0Jp0QJSGlFKUaBVLx2gWR0C6SA/R7Z3+dX2UKGgGaAloD0MIyT7IsiCvcUCUhpRSlGgVS51oFkdAukgX114gR3V9lChoBmgJaA9DCLwIU5TLhXFAlIaUUpRoFUu1aBZHQLpIK1HOKO11fZQoaAZoCWgPQwg3picsMWhxQJSGlFKUaBVLw2gWR0C6SEJ5u63BdX2UKGgGaAloD0MIinWqfM8EckCUhpRSlGgVS6doFkdAukhE77sOXnV9lChoBmgJaA9DCA0bZf1mInFAlIaUUpRoFUupaBZHQLpITkWAPNF1fZQoaAZoCWgPQwiw5ZXrLbJzQJSGlFKUaBVLrGgWR0C6SFPRZ2ZBdX2UKGgGaAloD0MIUz2ZfzQNckCUhpRSlGgVS8RoFkdAukhYliSaE3V9lChoBmgJaA9DCPSkTGpoW0JAlIaUUpRoFUtqaBZHQLpIcKYRdyF1fZQoaAZoCWgPQwihoBSt3CFxQJSGlFKUaBVLomgWR0C6SJDq0MPSdX2UKGgGaAloD0MIKnKIuHkjckCUhpRSlGgVS6FoFkdAukiYmMOwxHV9lChoBmgJaA9DCOLLRBFSzHBAlIaUUpRoFUuqaBZHQLpImEWIoE11fZQoaAZoCWgPQwit+fGXVnByQJSGlFKUaBVLvGgWR0C6SJ8Md92HdX2UKGgGaAloD0MIgZauYNsJc0CUhpRSlGgVS5hoFkdAukixVlwtKHV9lChoBmgJaA9DCAq7KHog4HFAlIaUUpRoFUufaBZHQLpItel9Brx1fZQoaAZoCWgPQwha9E4FXNRxQJSGlFKUaBVLmmgWR0C6SL0IX0oSdX2UKGgGaAloD0MI6KG2DeN0c0CUhpRSlGgVS9BoFkdAukjFpM6BAnV9lChoBmgJaA9DCFt6NNUTcnJAlIaUUpRoFUuiaBZHQLpI82Ifr8l1fZQoaAZoCWgPQwgCEHf1qppwQJSGlFKUaBVLrmgWR0C6SQRBNVR2dX2UKGgGaAloD0MIzEBl/PsocECUhpRSlGgVS8VoFkdAukkDYpUgjnV9lChoBmgJaA9DCIKrPIFwyXFAlIaUUpRoFUuyaBZHQLpJElyBCld1fZQoaAZoCWgPQwhD4h5Ln/pxQJSGlFKUaBVLsWgWR0C6SRc/D+BIdX2UKGgGaAloD0MIN/qYD0iscECUhpRSlGgVS7toFkdAukkoVj7Q9nV9lChoBmgJaA9DCOW36GSpwHJAlIaUUpRoFUuPaBZHQLpJQD7Ikqt1fZQoaAZoCWgPQwgYzjXMEPRxQJSGlFKUaBVLo2gWR0C6SVI8EFGHdX2UKGgGaAloD0MIOiF00KWwckCUhpRSlGgVS8xoFkdAuklXIJZ4fXV9lChoBmgJaA9DCJmDoKNVCXJAlIaUUpRoFUuSaBZHQLpJY4VARkF1fZQoaAZoCWgPQwjTo6mezPhwQJSGlFKUaBVLoGgWR0C6SWfJJXhgdX2UKGgGaAloD0MI8db5t4t7cUCUhpRSlGgVS7loFkdAuklsyCWeH3V9lChoBmgJaA9DCNhJfVlaaHNAlIaUUpRoFUvMaBZHQLpJe3eN1hd1fZQoaAZoCWgPQwhEw2LU9exyQJSGlFKUaBVLxGgWR0C6SZbsa86FdX2UKGgGaAloD0MILdFZZtETcUCUhpRSlGgVS71oFkdAukmfL2YfGXV9lChoBmgJaA9DCBrggmzZaG9AlIaUUpRoFUunaBZHQLpJtMefZmJ1fZQoaAZoCWgPQwhfzmxX6GRzQJSGlFKUaBVNogFoFkdAuknFdX1an3V9lChoBmgJaA9DCKXcfY5PRXNAlIaUUpRoFUu0aBZHQLpJ1EYwZfl1fZQoaAZoCWgPQwiYaftXFj5xQJSGlFKUaBVLqmgWR0C6Sdw7PppwdX2UKGgGaAloD0MI0uRiDGwpc0CUhpRSlGgVS7BoFkdAukneW5YozHV9lChoBmgJaA9DCEmil1FsdXFAlIaUUpRoFUvQaBZHQLpJ8m+TNdJ1fZQoaAZoCWgPQwh5HtyddWtxQJSGlFKUaBVLsWgWR0C6SfLH6uW9dX2UKGgGaAloD0MIPx767lYfckCUhpRSlGgVS7JoFkdAukoKLWI42nV9lChoBmgJaA9DCHyeP21UY3BAlIaUUpRoFUvFaBZHQLpKLSG8Emp1fZQoaAZoCWgPQwjPEI5Zdl9yQJSGlFKUaBVLw2gWR0C6Si/MwDeTdX2UKGgGaAloD0MILO+qB4zVcECUhpRSlGgVS7xoFkdAuko0WP91l3V9lChoBmgJaA9DCH8xW7KqCHFAlIaUUpRoFUusaBZHQLpKOKDkELZ1fZQoaAZoCWgPQwj5LM+De5Z0QJSGlFKUaBVLwWgWR0C6SkIg3cYZdX2UKGgGaAloD0MIIlD9g8hLc0CUhpRSlGgVS8RoFkdAukpBi/fwZ3V9lChoBmgJaA9DCKBtNetMA3BAlIaUUpRoFUu0aBZHQLpKWWLP2PF1fZQoaAZoCWgPQwgomgewyOlzQJSGlFKUaBVLuWgWR0C6SmYChew+dX2UKGgGaAloD0MI3jr/dhmLcECUhpRSlGgVS6xoFkdAukpsK8cuJ3V9lChoBmgJaA9DCAMIH0r00nBAlIaUUpRoFUukaBZHQLpKf0Xxe9l1fZQoaAZoCWgPQwjpCrYRD25yQJSGlFKUaBVLvWgWR0C6Sou8brC4dX2UKGgGaAloD0MINIC3QML2cECUhpRSlGgVS6hoFkdAukqM/2TPjXV9lChoBmgJaA9DCOdtbHak3XNAlIaUUpRoFUu8aBZHQLpKnqBmPHV1fZQoaAZoCWgPQwhyMQbWcUByQJSGlFKUaBVLrmgWR0C6SqaAWi1zdX2UKGgGaAloD0MIJ0ut91ukcUCUhpRSlGgVS6RoFkdAukqzwhGH6HV9lChoBmgJaA9DCGJqSx1kVXFAlIaUUpRoFUu9aBZHQLpKtWa+evp1fZQoaAZoCWgPQwiv6qwW2K1wQJSGlFKUaBVLpmgWR0C6Stc32mHhdX2UKGgGaAloD0MIAaJgxpQbcECUhpRSlGgVS6JoFkdAukra+JxecHV9lChoBmgJaA9DCDV5ymp6Z3BAlIaUUpRoFUulaBZHQLpK2lU6xPh1fZQoaAZoCWgPQwh5AfbR6YpyQJSGlFKUaBVLuWgWR0C6SujL4etCdX2UKGgGaAloD0MIlQ1rKkuycECUhpRSlGgVS6poFkdAuksFDeCTU3V9lChoBmgJaA9DCGed8X2xNnJAlIaUUpRoFUvCaBZHQLpLBSBshxJ1fZQoaAZoCWgPQwhHPNnNzB5yQJSGlFKUaBVLy2gWR0C6Sw/+CK77dX2UKGgGaAloD0MILjcY6nA0ckCUhpRSlGgVS7FoFkdAuksbZIxxk3V9lChoBmgJaA9DCAsm/igqj3JAlIaUUpRoFUupaBZHQLpLGeiSJTF1fZQoaAZoCWgPQwgEkUWaOApxQJSGlFKUaBVLs2gWR0C6SzlC5VfedWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 2444,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:427080d71c537d129e6157b8bf7eb18be7ee201d1a39ee7f733fd09afea841cb
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6931fb298d0fa35b6b18608afd27e20ee6226d14c1eb674478208b56a0e859fd
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 299.9703611784933, "std_reward": 20.565821670557746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T12:44:02.294929"}
|