--- license: gpl-3.0 language: - es library_name: spacy pipeline_tag: token-classification tags: - spacy - token-classification widget: - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." - text: "El proyecto lo financia el Ministerio de Industria y Competitividad." model-index: - name: es_spacy_ner_cds results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9690286251 - name: NER Recall type: recall value: 0.9683470106 - name: NER F Score type: f_score value: 0.9686876979 --- # Introduction spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). It was fine-tuned using `PlanTL-GOB-ES/roberta-base-bne`. | Feature | Description | | --- | --- | | **Name** | `es_spacy_ner_cds_trf` | | **Version** | `0.0.2` | | **spaCy** | `>=3.5.2,<3.6.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | ### Label Scheme
View label scheme (4 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
## Usage You can use this model with the spaCy *pipeline* for NER. ```python import spacy from spacy.pipeline import merge_entities nlp = spacy.load("es_spacy_ner_cds_trf") nlp.add_pipe('sentencizer') example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. Si te metes en el Franco desde la Alameda, vas hacia la Catedral. Y allí precisamente es Santiago el patrón del pueblo." ner_pipe = nlp(example) print(ner_pipe.ents) for token in merge_entities(ner_pipe): print(token.text, token.ent_type_) ``` ## Dataset ToDo ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 97.27 | | `ENTS_P` | 97.21 | | `ENTS_R` | 97.32 | | `TRANSFORMER_LOSS` | 399.1012151603 | | `NER_LOSS` | 92.456780956 |