sdocio commited on
Commit
9190b79
1 Parent(s): 52614c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -3
README.md CHANGED
@@ -2,20 +2,41 @@
2
  language: es
3
  license: gpl-3.0
4
  tags:
5
- - spaCy
6
- - Token Classification
7
  widget:
8
  - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
9
  - text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
10
  model-index:
11
  - name: es_spacy_ner_cds
12
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  # Introduction
16
 
17
  spaCy NER model for Spanish trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
18
 
 
 
 
 
 
 
 
 
19
  ## Usage
20
 
21
  You can use this model with the spaCy *pipeline* for NER.
 
2
  language: es
3
  license: gpl-3.0
4
  tags:
5
+ - spacy
6
+ - token-classification
7
  widget:
8
  - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
9
  - text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
10
  model-index:
11
  - name: es_spacy_ner_cds
12
+ results:
13
+ - task:
14
+ name: NER
15
+ type: token-classification
16
+ metrics:
17
+ - name: NER Precision (micro avg)
18
+ type: precision
19
+ value: 0.963
20
+ - name: NER Recall (micro avg)
21
+ type: recall
22
+ value: 0.958
23
+ - name: NER F Score (micro avg)
24
+ type: f_score
25
+ value: 0.961
26
  ---
27
 
28
  # Introduction
29
 
30
  spaCy NER model for Spanish trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
31
 
32
+ | Feature | Description |
33
+ | --- | --- |
34
+ | **Name** | `es_spacy_ner_cds` |
35
+ | **Version** | `0.0.1a` |
36
+ | **spaCy** | `>=3.4.3,<3.5.0` |
37
+ | **Pipeline** | `tok2vec`, `ner` |
38
+ | **Components** | `tok2vec`, `ner` |
39
+
40
  ## Usage
41
 
42
  You can use this model with the spaCy *pipeline* for NER.