sebastian-hofstaetter
commited on
Commit
·
a03882c
1
Parent(s):
5323213
add model & infos
Browse files- README.md +71 -0
- config.json +22 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "en"
|
3 |
+
tags:
|
4 |
+
- dpr
|
5 |
+
- dense-passage-retrieval
|
6 |
+
- knowledge-distillation
|
7 |
+
datasets:
|
8 |
+
- ms_marco
|
9 |
+
---
|
10 |
+
|
11 |
+
# DistilBert for Dense Passage Retrieval trained with Balanced Topic Aware Sampling (TAS-B)
|
12 |
+
|
13 |
+
We provide a retrieval trained DistilBert-based model (we call the *dual-encoder then dot-product scoring* architecture BERT_Dot) trained with Balanced Topic Aware Sampling on MSMARCO-Passage.
|
14 |
+
|
15 |
+
This instance was trained with a batch size of 256 and can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecture is a 6-layer DistilBERT, without architecture additions or modifications (we only change the weights during training) - to receive a query/passage representation we pool the CLS vector. We use the same BERT layers for both query and passage encoding (yields better results, and lowers memory requirements).
|
16 |
+
|
17 |
+
If you want to know more about our efficient (can be done on a single consumer GPU in 48 hours) batch composition procedure and dual supervision for dense retrieval training, check out our paper: https://arxiv.org/abs/2104.06967 🎉
|
18 |
+
|
19 |
+
For more information and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/tas-balanced-dense-retrieval
|
20 |
+
|
21 |
+
## Effectiveness on MSMARCO Passage & TREC-DL'19
|
22 |
+
|
23 |
+
We trained our model on the MSMARCO standard ("small"-400K query) training triples re-sampled with our TAS-B method. As teacher models we used the BERT_CAT pairwise scores as well as the ColBERT model for in-batch-negative signals published here: https://github.com/sebastian-hofstaetter/neural-ranking-kd
|
24 |
+
|
25 |
+
### MSMARCO-DEV (7K)
|
26 |
+
|
27 |
+
| | MRR@10 | NDCG@10 | Recall@1K |
|
28 |
+
|----------------------------------|--------|---------|-----------------------------|
|
29 |
+
| BM25 | .194 | .241 | .857 |
|
30 |
+
| **TAS-B BERT_Dot** (Retrieval) | .347 | .410 | .978 |
|
31 |
+
|
32 |
+
### TREC-DL'19
|
33 |
+
|
34 |
+
For MRR and Recall we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers.
|
35 |
+
|
36 |
+
| | MRR@10 | NDCG@10 | Recall@1K |
|
37 |
+
|----------------------------------|--------|---------|-----------------------------|
|
38 |
+
| BM25 | .689 | .501 | .739 |
|
39 |
+
| **TAS-B BERT_Dot** (Retrieval) | .883 | .717 | .843 |
|
40 |
+
|
41 |
+
### TREC-DL'20
|
42 |
+
|
43 |
+
For MRR and Recall we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers.
|
44 |
+
|
45 |
+
| | MRR@10 | NDCG@10 | Recall@1K |
|
46 |
+
|----------------------------------|--------|---------|-----------------------------|
|
47 |
+
| BM25 | .649 | .475 | .806 |
|
48 |
+
| **TAS-B BERT_Dot** (Retrieval) | .843 | .686 | .875 |
|
49 |
+
|
50 |
+
|
51 |
+
For more baselines, info and analysis, please see the paper: https://arxiv.org/abs/2104.06967
|
52 |
+
|
53 |
+
## Limitations & Bias
|
54 |
+
|
55 |
+
- The model inherits social biases from both DistilBERT and MSMARCO.
|
56 |
+
|
57 |
+
- The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text.
|
58 |
+
|
59 |
+
|
60 |
+
## Citation
|
61 |
+
|
62 |
+
If you use our model checkpoint please cite our work as:
|
63 |
+
|
64 |
+
```
|
65 |
+
@inproceedings{Hofstaetter2021_tasb_dense_retrieval,
|
66 |
+
author = {Sebastian Hofst{\"a}tter and Sheng-Chieh Lin and Jheng-Hong Yang and Jimmy Lin and Allan Hanbury},
|
67 |
+
title = {{Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling}},
|
68 |
+
booktitle = {Proc. of SIGIR},
|
69 |
+
year = {2021},
|
70 |
+
}
|
71 |
+
```
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"vocab_size": 30522
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dc56a56d0f65ec2d057be4507775c47a79713f0b25f6c832a00eb6f59004a49
|
3 |
+
size 265472230
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|