File size: 4,207 Bytes
35b774a
a737d48
 
 
35b774a
47cc238
 
 
 
e614197
47cc238
 
 
35b774a
 
47cc238
35b774a
 
47cc238
35b774a
84ae085
35b774a
47cc238
35b774a
47cc238
84ae085
35b774a
 
47cc238
35b774a
47cc238
35b774a
47cc238
35b774a
 
47cc238
35b774a
47cc238
35b774a
47cc238
35b774a
 
47cc238
35b774a
47cc238
 
 
 
 
 
 
35b774a
47cc238
35b774a
47cc238
35b774a
47cc238
 
35b774a
47cc238
35b774a
fc7ea43
35b774a
47cc238
35b774a
47cc238
d5506f0
 
35b774a
47cc238
 
 
 
 
 
 
35b774a
47cc238
35b774a
 
47cc238
 
 
 
 
 
 
 
 
 
 
35b774a
47cc238
 
 
 
 
 
 
 
 
 
 
 
 
 
35b774a
47cc238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b774a
 
47cc238
35b774a
47cc238
35b774a
47cc238
35b774a
47cc238
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
language:
- de
license: apache-2.0
library_name: transformers
tags:
- deutsch
- german
- seedbox
- mistral
datasets:
- seedboxai/multitask_german_examples_32k
pipeline_tag: text-generation
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645ded34a45b4182d7f5c385/oh7yRzqtRlDtdu8sJoAdV.jpeg)


# KafkaLM-7B-German-V0.1

**KafkaLM 7b** is a Mistral 7b model - further pre-trained on a large German dataset from Björn Plüster and LAION. [leo-mistral-hessianai-7b](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b) - which was finetuned on an ensemble of popular high-quality open-source instruction sets (translated from English to German). 

KafkaLM 7b is a [Seedbox](https://huggingface.co/seedboxai) project trained by [Dennis Dickmann](https://huggingface.co/doubledsbv).

**Why Kafka?** 
The models are proficient, yet creative, and have some tendencies to linguistically push boundaries 😊


## Model Details

The purpose of releasing the **KafkaLM series** is to contribute to the German AI community with a set of fine-tuned LLMs that are easy to use in everyday applications across a variety of tasks.

The main goal was to provide LLMs proficient in German, especially to be used in German-speaking business contexts where English alone is not sufficient.


### Dataset

I used a 8k filtered version of the following [seedboxai/multitask_german_examples_32k](https://huggingface.co/datasets/seedboxai/multitask_german_examples_32k)

### Prompt Format


This model follows the subsequent prompt format:

```
<|system|>
Du bist ein freundlicher und hilfsbereiter KI-Assistent. Du beantwortest Fragen faktenorientiert und präzise, ohne dabei relevante Fakten auszulassen.</s>
<|user|>
Welche Möglichkeiten der energetischen Sanierung habe ich neben Solar und Energiespeicher?</s>
<|assistant|>
```

### Inference

Getting started with the model is straightforward

```python
import transformers

model_id = "seedboxai/KafkaLM-7B-German-V0.1"

model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_id)

tokenizer.padding_side = "right" 
tokenizer.pad_token = tokenizer.unk_token
tokenizer.add_eos_token = False

def generate_prompt(input):
    prompt = ''
    sys_prompt = "Du bist ein freundlicher und hilfsbereiter KI-Assistent. Du beantwortest Fragen faktenorientiert und präzise, ohne dabei relevante Fakten auszulassen."
    
    prompt += f"<|system|>\n{sys_prompt.strip()}</s>\n"
    prompt += f"<|user|>\n{input.strip()}</s>\n"
    prompt += f"<|assistant|>\n"

    return prompt.strip()


def evaluate(
    input,
    temperature=0.7,
    top_p=0.95,
    top_k=50,
    num_beams=3,
    max_new_tokens=512,
    #max_length=8192,
    **kwargs,
):
    prompt = generate_prompt(input)

    #print(prompt)
    
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    attention_mask=inputs["attention_mask"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        no_repeat_ngram_size=3,
        do_sample=True,
        **kwargs,
    )

    with torch.no_grad():
        generation_output = model.generate(
            early_stopping=False,
            #eos_token_id=tokenizer.eos_token_id,
            #pad_token_id=tokenizer.pad_token_id,
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            #max_length= max_length
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output #.split("<|assistant|>")[1].strip()


print(evaluate("Wer ist eigentlich dieser Kafka?"))

```

## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.