sefa314159 commited on
Commit
d42f0f0
1 Parent(s): 8af4239

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 228.47 +/- 23.32
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff44d479c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff44d479cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff44d479d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff44d479dd0>", "_build": "<function ActorCriticPolicy._build at 0x7ff44d479e60>", "forward": "<function ActorCriticPolicy.forward at 0x7ff44d479ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff44d479f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff44d482050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff44d4820e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff44d482170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff44d482200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff44d4c8960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651782442.7625823, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDtx717qKC6cvB8vIJhAzSpqyU7u0+yswAAgD8AAIA/nYWpPsvi9j4wYmq+V5qAvlPKMT4jZrS9AAAAAAAAAABOhPC+WKbqvS0+KroWUA45ER+ovvQMqjkAAIA/AACAP9MAQL4Gnlc/xl74u0sEz74MnYS+uhHFPQAAAAAAAAAA4xY1v4u3jL5tftc69V4AOUqC2j1NCwG6AACAPwAAgD+NdtM9XGslumIb3zqvs4w19BYzuuCg/rkAAIA/AACAP3Nzzr329BG6+jxGutcjP7WWRQs68wJkOQAAgD8AAIA/ALdXPmTKtT+wqxI/kF7MvsLxBz13xaA9AAAAAAAAAAAA0Po6XFtQupFIHLwNSkQ5feqTOe2dtLgAAIA/AACAP2aEgb1cx2u6ijEEOY+rLTUQrx+7D9AXuAAAgD8AAIA/BqlXPqQSCjxK3ka8PvH/uS6LhD2O1+26AACAPwAAgD+N0kk+9lUZOxYE5DgqfhA2NcLmPHdOArgAAIA/AACAP3bHYL7sGKs84nWIujw0CDlLDzW+snqwOQAAgD8AAIA/mk4RPVx/brqVNY46buMUNnCugjtYAA41AACAPwAAgD/zcQE+Fzq3Pl+HAT3GGIi+oY+Wun8TDL4AAAAAAAAAABp5MT72k3Q72hmPuyYmErkRRQk9JpoCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0GT/PA1GZECUhpRSlIwBbJRN6AOMAXSUR0CHBy5Dqnm8dX2UKGgGaAloD0MIlMFR8uosVUCUhpRSlGgVTegDaBZHQIcJbR4QjD91fZQoaAZoCWgPQwgkKelhaJdNQJSGlFKUaBVN6ANoFkdAhx0aYeDFqHV9lChoBmgJaA9DCCe9b3ztYURAlIaUUpRoFUvCaBZHQIcoy44Ia991fZQoaAZoCWgPQwiscMtH0kplQJSGlFKUaBVN6ANoFkdAhzJUnPVurXV9lChoBmgJaA9DCAYwZeCAqFFAlIaUUpRoFU3oA2gWR0CHNvG+bmU4dX2UKGgGaAloD0MI+BisOFUMYMCUhpRSlGgVTZQBaBZHQIdAO85CF9N1fZQoaAZoCWgPQwjde7jkuABVQJSGlFKUaBVN6ANoFkdAh0HOerdWQ3V9lChoBmgJaA9DCFlRg2kYNEBAlIaUUpRoFUvJaBZHQIdLW/1xsEd1fZQoaAZoCWgPQwg5K6Im+ptbQJSGlFKUaBVN6ANoFkdAh07DjJdSl3V9lChoBmgJaA9DCLjlIynpc1dAlIaUUpRoFU3oA2gWR0CHU0BaLXMAdX2UKGgGaAloD0MIQzf7A+VlX0CUhpRSlGgVTegDaBZHQIdTsHyEtd11fZQoaAZoCWgPQwjYSBKEK/5KQJSGlFKUaBVN6ANoFkdAh1VZP2wmmnV9lChoBmgJaA9DCMBbIEHxkzBAlIaUUpRoFUvHaBZHQIdedQZXMhZ1fZQoaAZoCWgPQwi5cvbOaBVcQJSGlFKUaBVN6ANoFkdAh2g0Sh8IA3V9lChoBmgJaA9DCPj7xWzJslHAlIaUUpRoFU0BAWgWR0CHaFxx1gYxdX2UKGgGaAloD0MIL1G9NTBnZkCUhpRSlGgVTegDaBZHQIduUC/47BB1fZQoaAZoCWgPQwj9ag4QzOU9wJSGlFKUaBVL8WgWR0CHblVCHARDdX2UKGgGaAloD0MIm3XG90X7Y0CUhpRSlGgVTegDaBZHQId3iSLZSNx1fZQoaAZoCWgPQwgkfsUaLvtcQJSGlFKUaBVN6ANoFkdAh4je23KB/nV9lChoBmgJaA9DCDtT6LzGJj3AlIaUUpRoFU3oA2gWR0CH1hTQVsUJdX2UKGgGaAloD0MI1jbF4yIyYECUhpRSlGgVTegDaBZHQIfk99v0h/11fZQoaAZoCWgPQwg5fqg0YrYiwJSGlFKUaBVL7mgWR0CH7KRMewLWdX2UKGgGaAloD0MIx0lh3uMeXECUhpRSlGgVTegDaBZHQIf5gbKifxt1fZQoaAZoCWgPQwgXEFoPX9RYwJSGlFKUaBVNLwJoFkdAh/zje9Ba93V9lChoBmgJaA9DCL+1EyUhGV5AlIaUUpRoFU3oA2gWR0CICudmQKa5dX2UKGgGaAloD0MIIR0ewngmYECUhpRSlGgVTegDaBZHQIgOpj4Hoox1fZQoaAZoCWgPQwhWKNL9nLhIQJSGlFKUaBVLpWgWR0CIJAm4RVZLdX2UKGgGaAloD0MIkGeXb/01Y0CUhpRSlGgVTegDaBZHQIgkqODJ2dN1fZQoaAZoCWgPQwh3oE55dIFbQJSGlFKUaBVN6ANoFkdAiClJHRTjvXV9lChoBmgJaA9DCG+D2m/tOktAlIaUUpRoFU3oA2gWR0CIKcIhQm/ndX2UKGgGaAloD0MIxSCwcmiyXUCUhpRSlGgVTegDaBZHQIgrlPYWcjJ1fZQoaAZoCWgPQwhGtvP91GRZQJSGlFKUaBVN6ANoFkdAiDTOn/DLsHV9lChoBmgJaA9DCHrf+NozRFxAlIaUUpRoFU3oA2gWR0CIPlfR/mT1dX2UKGgGaAloD0MIjdDP1OvtXkCUhpRSlGgVTegDaBZHQIhEqhakhzN1fZQoaAZoCWgPQwjajNMQVQxeQJSGlFKUaBVN6ANoFkdAiESti6QNkXV9lChoBmgJaA9DCJ+sGK4Oa1pAlIaUUpRoFU3oA2gWR0CITe717IDHdX2UKGgGaAloD0MI5+RFJuC3HECUhpRSlGgVS81oFkdAiFvPfj0cwXV9lChoBmgJaA9DCHNp/MKrIGvAlIaUUpRoFU1nAWgWR0CIXJBKtga4dX2UKGgGaAloD0MI0O/7Ny9oWECUhpRSlGgVTegDaBZHQIis1nTRYzV1fZQoaAZoCWgPQwhFK/cCs4BLQJSGlFKUaBVN6ANoFkdAiLstVR1ox3V9lChoBmgJaA9DCPD3i9kS/GBAlIaUUpRoFU3oA2gWR0CIwqPFNtZWdX2UKGgGaAloD0MIs+xJYHOmWUCUhpRSlGgVTegDaBZHQIjN1JL/S6V1fZQoaAZoCWgPQwhRhT/Dm3hYQJSGlFKUaBVN6ANoFkdAiNGAB1cMVnV9lChoBmgJaA9DCGvvU1VoOCPAlIaUUpRoFUvYaBZHQIjdlXA/LTx1fZQoaAZoCWgPQwiLUGwFTRpgQJSGlFKUaBVN6ANoFkdAiOSTbFjur3V9lChoBmgJaA9DCGkaFM0DPkdAlIaUUpRoFU3oA2gWR0CI+6wPAfuDdX2UKGgGaAloD0MIkuwRaob8ZUCUhpRSlGgVTegDaBZHQIj8Xs9jgAJ1fZQoaAZoCWgPQwjGNT6T/TxdQJSGlFKUaBVN6ANoFkdAiQFa+FlCkXV9lChoBmgJaA9DCGADIsSVO2JAlIaUUpRoFU3oA2gWR0CJAx3ueBhAdX2UKGgGaAloD0MI5WTiVkEM1j+UhpRSlGgVTegDaBZHQIkMVfReC051fZQoaAZoCWgPQwiiKqbST2AhwJSGlFKUaBVLyGgWR0CJGLVFx4pudX2UKGgGaAloD0MIdhw/VBr9XkCUhpRSlGgVTegDaBZHQIkb2VNYbKl1fZQoaAZoCWgPQwjarWUynAlhQJSGlFKUaBVN6ANoFkdAiRvcV58jRnV9lChoBmgJaA9DCNaqXRPSzF9AlIaUUpRoFU3oA2gWR0CJJM4Ds+mndX2UKGgGaAloD0MINwAbECFSQECUhpRSlGgVS7poFkdAiSXtJOFg2XV9lChoBmgJaA9DCEG62LRScltAlIaUUpRoFU3oA2gWR0CJMeiO/+KkdX2UKGgGaAloD0MIBtUGJ6KbYUCUhpRSlGgVTegDaBZHQIkymCuloDh1fZQoaAZoCWgPQwgsKXef4zRQQJSGlFKUaBVLwmgWR0CJP6nLq2SddX2UKGgGaAloD0MIvw6cM6K9XUCUhpRSlGgVTegDaBZHQImBQ0oBq9J1fZQoaAZoCWgPQwjQRxlxAZ9cQJSGlFKUaBVN6ANoFkdAiZWq/20zCXV9lChoBmgJaA9DCCQrvwxG02FAlIaUUpRoFU3oA2gWR0CJoNG8274BdX2UKGgGaAloD0MImiZsP5m1ZkCUhpRSlGgVTegDaBZHQImkhlBhQWN1fZQoaAZoCWgPQwhnKO54k0ReQJSGlFKUaBVN6ANoFkdAibE4M4LkS3V9lChoBmgJaA9DCCTusfShu19AlIaUUpRoFU3oA2gWR0CJuCXdj5KwdX2UKGgGaAloD0MIHZCEfTtkYkCUhpRSlGgVTegDaBZHQInP4RdyDI11fZQoaAZoCWgPQwgOTdnpBxtfQJSGlFKUaBVN6ANoFkdAidX2xyGSIXV9lChoBmgJaA9DCIv7j0yHlVdAlIaUUpRoFU3oA2gWR0CJ1+l3Qla9dX2UKGgGaAloD0MIbhlwlpJFCECUhpRSlGgVS9FoFkdAiduCeNDMNnV9lChoBmgJaA9DCC0HeqhtIwFAlIaUUpRoFUuQaBZHQInvUzVMEid1fZQoaAZoCWgPQwgL1GLwMOJUQJSGlFKUaBVN6ANoFkdAifF5n+Q2dnV9lChoBmgJaA9DCNTUsrW+SOU/lIaUUpRoFUu0aBZHQInzafthNM51fZQoaAZoCWgPQwh5k9+ik4JVQJSGlFKUaBVN6ANoFkdAifTxEv0yxnV9lChoBmgJaA9DCNNmnIaot1dAlIaUUpRoFU3oA2gWR0CJ9Pdl/YrbdX2UKGgGaAloD0MItyqJ7AMtYkCUhpRSlGgVTegDaBZHQIn/2e4Cp3p1fZQoaAZoCWgPQwjSVbq7zsljQJSGlFKUaBVN6ANoFkdAigwustCiRHV9lChoBmgJaA9DCJrv4CcOA2FAlIaUUpRoFU3oA2gWR0CKDOKiO/+LdX2UKGgGaAloD0MIMISc9/+RNUCUhpRSlGgVS8hoFkdAihFXTVlPJ3V9lChoBmgJaA9DCPT8aaM6PRPAlIaUUpRoFUvgaBZHQIoRvyEtdzJ1fZQoaAZoCWgPQwhOtoE7UOlfQJSGlFKUaBVN6ANoFkdAihoZ/kNnXnV9lChoBmgJaA9DCMr9DkUBOGFAlIaUUpRoFU3oA2gWR0CKHhTx5LRKdX2UKGgGaAloD0MI95LGaB2HQMCUhpRSlGgVS8NoFkdAimOguAZsK3V9lChoBmgJaA9DCIWwGktYB0BAlIaUUpRoFUvWaBZHQIpr9U6xPft1fZQoaAZoCWgPQwjrHtlcNZ1ZQJSGlFKUaBVN6ANoFkdAimzhrnDBM3V9lChoBmgJaA9DCMqIC0CjDWFAlIaUUpRoFU3oA2gWR0CKdvryDqW1dX2UKGgGaAloD0MIjSRBuAJ0WECUhpRSlGgVTegDaBZHQIp6a22G7Bh1fZQoaAZoCWgPQwjbFfpgGWRcQJSGlFKUaBVN6ANoFkdAioXm16Vt43V9lChoBmgJaA9DCAwDllzF0ijAlIaUUpRoFUvVaBZHQIqaaeqaPS51fZQoaAZoCWgPQwj99J81P74RwJSGlFKUaBVL92gWR0CKnCNDtw71dX2UKGgGaAloD0MIzqW4quy9XUCUhpRSlGgVTegDaBZHQIqh4NEw35x1fZQoaAZoCWgPQwgeUDblipBoQJSGlFKUaBVN6ANoFkdAiqzUALiMpHV9lChoBmgJaA9DCGe4AZ8fqEJAlIaUUpRoFUvKaBZHQIq6god+5OJ1fZQoaAZoCWgPQwgh6GhVS25dQJSGlFKUaBVN6ANoFkdAisCI+GGmDXV9lChoBmgJaA9DCHb7rDJT3F1AlIaUUpRoFU3oA2gWR0CKxBMPjGT+dX2UKGgGaAloD0MIeT2YFB8DV0CUhpRSlGgVTegDaBZHQIrFWFL39Jl1fZQoaAZoCWgPQwh+xRoucmBZQJSGlFKUaBVN6ANoFkdAis/hUrCm/HV9lChoBmgJaA9DCMRBQpQvSVlAlIaUUpRoFU3oA2gWR0CK3HVRUFSsdX2UKGgGaAloD0MIaAkyAirnWUCUhpRSlGgVTegDaBZHQIriLjzZpSJ1fZQoaAZoCWgPQwiE8j6O5k5hQJSGlFKUaBVN6ANoFkdAiutO/tY0VXV9lChoBmgJaA9DCBmSk4nbcWRAlIaUUpRoFU3oA2gWR0CK73lFMIu5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc6d9abd4ba7c7a7268c8aaa5561348f74d198256320480e6f14a255650b771
3
+ size 144020
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff44d479c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff44d479cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff44d479d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff44d479dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff44d479e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff44d479ef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff44d479f80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff44d482050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff44d4820e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff44d482170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff44d482200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff44d4c8960>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651782442.7625823,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDtx717qKC6cvB8vIJhAzSpqyU7u0+yswAAgD8AAIA/nYWpPsvi9j4wYmq+V5qAvlPKMT4jZrS9AAAAAAAAAABOhPC+WKbqvS0+KroWUA45ER+ovvQMqjkAAIA/AACAP9MAQL4Gnlc/xl74u0sEz74MnYS+uhHFPQAAAAAAAAAA4xY1v4u3jL5tftc69V4AOUqC2j1NCwG6AACAPwAAgD+NdtM9XGslumIb3zqvs4w19BYzuuCg/rkAAIA/AACAP3Nzzr329BG6+jxGutcjP7WWRQs68wJkOQAAgD8AAIA/ALdXPmTKtT+wqxI/kF7MvsLxBz13xaA9AAAAAAAAAAAA0Po6XFtQupFIHLwNSkQ5feqTOe2dtLgAAIA/AACAP2aEgb1cx2u6ijEEOY+rLTUQrx+7D9AXuAAAgD8AAIA/BqlXPqQSCjxK3ka8PvH/uS6LhD2O1+26AACAPwAAgD+N0kk+9lUZOxYE5DgqfhA2NcLmPHdOArgAAIA/AACAP3bHYL7sGKs84nWIujw0CDlLDzW+snqwOQAAgD8AAIA/mk4RPVx/brqVNY46buMUNnCugjtYAA41AACAPwAAgD/zcQE+Fzq3Pl+HAT3GGIi+oY+Wun8TDL4AAAAAAAAAABp5MT72k3Q72hmPuyYmErkRRQk9JpoCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0GT/PA1GZECUhpRSlIwBbJRN6AOMAXSUR0CHBy5Dqnm8dX2UKGgGaAloD0MIlMFR8uosVUCUhpRSlGgVTegDaBZHQIcJbR4QjD91fZQoaAZoCWgPQwgkKelhaJdNQJSGlFKUaBVN6ANoFkdAhx0aYeDFqHV9lChoBmgJaA9DCCe9b3ztYURAlIaUUpRoFUvCaBZHQIcoy44Ia991fZQoaAZoCWgPQwiscMtH0kplQJSGlFKUaBVN6ANoFkdAhzJUnPVurXV9lChoBmgJaA9DCAYwZeCAqFFAlIaUUpRoFU3oA2gWR0CHNvG+bmU4dX2UKGgGaAloD0MI+BisOFUMYMCUhpRSlGgVTZQBaBZHQIdAO85CF9N1fZQoaAZoCWgPQwjde7jkuABVQJSGlFKUaBVN6ANoFkdAh0HOerdWQ3V9lChoBmgJaA9DCFlRg2kYNEBAlIaUUpRoFUvJaBZHQIdLW/1xsEd1fZQoaAZoCWgPQwg5K6Im+ptbQJSGlFKUaBVN6ANoFkdAh07DjJdSl3V9lChoBmgJaA9DCLjlIynpc1dAlIaUUpRoFU3oA2gWR0CHU0BaLXMAdX2UKGgGaAloD0MIQzf7A+VlX0CUhpRSlGgVTegDaBZHQIdTsHyEtd11fZQoaAZoCWgPQwjYSBKEK/5KQJSGlFKUaBVN6ANoFkdAh1VZP2wmmnV9lChoBmgJaA9DCMBbIEHxkzBAlIaUUpRoFUvHaBZHQIdedQZXMhZ1fZQoaAZoCWgPQwi5cvbOaBVcQJSGlFKUaBVN6ANoFkdAh2g0Sh8IA3V9lChoBmgJaA9DCPj7xWzJslHAlIaUUpRoFU0BAWgWR0CHaFxx1gYxdX2UKGgGaAloD0MIL1G9NTBnZkCUhpRSlGgVTegDaBZHQIduUC/47BB1fZQoaAZoCWgPQwj9ag4QzOU9wJSGlFKUaBVL8WgWR0CHblVCHARDdX2UKGgGaAloD0MIm3XG90X7Y0CUhpRSlGgVTegDaBZHQId3iSLZSNx1fZQoaAZoCWgPQwgkfsUaLvtcQJSGlFKUaBVN6ANoFkdAh4je23KB/nV9lChoBmgJaA9DCDtT6LzGJj3AlIaUUpRoFU3oA2gWR0CH1hTQVsUJdX2UKGgGaAloD0MI1jbF4yIyYECUhpRSlGgVTegDaBZHQIfk99v0h/11fZQoaAZoCWgPQwg5fqg0YrYiwJSGlFKUaBVL7mgWR0CH7KRMewLWdX2UKGgGaAloD0MIx0lh3uMeXECUhpRSlGgVTegDaBZHQIf5gbKifxt1fZQoaAZoCWgPQwgXEFoPX9RYwJSGlFKUaBVNLwJoFkdAh/zje9Ba93V9lChoBmgJaA9DCL+1EyUhGV5AlIaUUpRoFU3oA2gWR0CICudmQKa5dX2UKGgGaAloD0MIIR0ewngmYECUhpRSlGgVTegDaBZHQIgOpj4Hoox1fZQoaAZoCWgPQwhWKNL9nLhIQJSGlFKUaBVLpWgWR0CIJAm4RVZLdX2UKGgGaAloD0MIkGeXb/01Y0CUhpRSlGgVTegDaBZHQIgkqODJ2dN1fZQoaAZoCWgPQwh3oE55dIFbQJSGlFKUaBVN6ANoFkdAiClJHRTjvXV9lChoBmgJaA9DCG+D2m/tOktAlIaUUpRoFU3oA2gWR0CIKcIhQm/ndX2UKGgGaAloD0MIxSCwcmiyXUCUhpRSlGgVTegDaBZHQIgrlPYWcjJ1fZQoaAZoCWgPQwhGtvP91GRZQJSGlFKUaBVN6ANoFkdAiDTOn/DLsHV9lChoBmgJaA9DCHrf+NozRFxAlIaUUpRoFU3oA2gWR0CIPlfR/mT1dX2UKGgGaAloD0MIjdDP1OvtXkCUhpRSlGgVTegDaBZHQIhEqhakhzN1fZQoaAZoCWgPQwjajNMQVQxeQJSGlFKUaBVN6ANoFkdAiESti6QNkXV9lChoBmgJaA9DCJ+sGK4Oa1pAlIaUUpRoFU3oA2gWR0CITe717IDHdX2UKGgGaAloD0MI5+RFJuC3HECUhpRSlGgVS81oFkdAiFvPfj0cwXV9lChoBmgJaA9DCHNp/MKrIGvAlIaUUpRoFU1nAWgWR0CIXJBKtga4dX2UKGgGaAloD0MI0O/7Ny9oWECUhpRSlGgVTegDaBZHQIis1nTRYzV1fZQoaAZoCWgPQwhFK/cCs4BLQJSGlFKUaBVN6ANoFkdAiLstVR1ox3V9lChoBmgJaA9DCPD3i9kS/GBAlIaUUpRoFU3oA2gWR0CIwqPFNtZWdX2UKGgGaAloD0MIs+xJYHOmWUCUhpRSlGgVTegDaBZHQIjN1JL/S6V1fZQoaAZoCWgPQwhRhT/Dm3hYQJSGlFKUaBVN6ANoFkdAiNGAB1cMVnV9lChoBmgJaA9DCGvvU1VoOCPAlIaUUpRoFUvYaBZHQIjdlXA/LTx1fZQoaAZoCWgPQwiLUGwFTRpgQJSGlFKUaBVN6ANoFkdAiOSTbFjur3V9lChoBmgJaA9DCGkaFM0DPkdAlIaUUpRoFU3oA2gWR0CI+6wPAfuDdX2UKGgGaAloD0MIkuwRaob8ZUCUhpRSlGgVTegDaBZHQIj8Xs9jgAJ1fZQoaAZoCWgPQwjGNT6T/TxdQJSGlFKUaBVN6ANoFkdAiQFa+FlCkXV9lChoBmgJaA9DCGADIsSVO2JAlIaUUpRoFU3oA2gWR0CJAx3ueBhAdX2UKGgGaAloD0MI5WTiVkEM1j+UhpRSlGgVTegDaBZHQIkMVfReC051fZQoaAZoCWgPQwiiKqbST2AhwJSGlFKUaBVLyGgWR0CJGLVFx4pudX2UKGgGaAloD0MIdhw/VBr9XkCUhpRSlGgVTegDaBZHQIkb2VNYbKl1fZQoaAZoCWgPQwjarWUynAlhQJSGlFKUaBVN6ANoFkdAiRvcV58jRnV9lChoBmgJaA9DCNaqXRPSzF9AlIaUUpRoFU3oA2gWR0CJJM4Ds+mndX2UKGgGaAloD0MINwAbECFSQECUhpRSlGgVS7poFkdAiSXtJOFg2XV9lChoBmgJaA9DCEG62LRScltAlIaUUpRoFU3oA2gWR0CJMeiO/+KkdX2UKGgGaAloD0MIBtUGJ6KbYUCUhpRSlGgVTegDaBZHQIkymCuloDh1fZQoaAZoCWgPQwgsKXef4zRQQJSGlFKUaBVLwmgWR0CJP6nLq2SddX2UKGgGaAloD0MIvw6cM6K9XUCUhpRSlGgVTegDaBZHQImBQ0oBq9J1fZQoaAZoCWgPQwjQRxlxAZ9cQJSGlFKUaBVN6ANoFkdAiZWq/20zCXV9lChoBmgJaA9DCCQrvwxG02FAlIaUUpRoFU3oA2gWR0CJoNG8274BdX2UKGgGaAloD0MImiZsP5m1ZkCUhpRSlGgVTegDaBZHQImkhlBhQWN1fZQoaAZoCWgPQwhnKO54k0ReQJSGlFKUaBVN6ANoFkdAibE4M4LkS3V9lChoBmgJaA9DCCTusfShu19AlIaUUpRoFU3oA2gWR0CJuCXdj5KwdX2UKGgGaAloD0MIHZCEfTtkYkCUhpRSlGgVTegDaBZHQInP4RdyDI11fZQoaAZoCWgPQwgOTdnpBxtfQJSGlFKUaBVN6ANoFkdAidX2xyGSIXV9lChoBmgJaA9DCIv7j0yHlVdAlIaUUpRoFU3oA2gWR0CJ1+l3Qla9dX2UKGgGaAloD0MIbhlwlpJFCECUhpRSlGgVS9FoFkdAiduCeNDMNnV9lChoBmgJaA9DCC0HeqhtIwFAlIaUUpRoFUuQaBZHQInvUzVMEid1fZQoaAZoCWgPQwgL1GLwMOJUQJSGlFKUaBVN6ANoFkdAifF5n+Q2dnV9lChoBmgJaA9DCNTUsrW+SOU/lIaUUpRoFUu0aBZHQInzafthNM51fZQoaAZoCWgPQwh5k9+ik4JVQJSGlFKUaBVN6ANoFkdAifTxEv0yxnV9lChoBmgJaA9DCNNmnIaot1dAlIaUUpRoFU3oA2gWR0CJ9Pdl/YrbdX2UKGgGaAloD0MItyqJ7AMtYkCUhpRSlGgVTegDaBZHQIn/2e4Cp3p1fZQoaAZoCWgPQwjSVbq7zsljQJSGlFKUaBVN6ANoFkdAigwustCiRHV9lChoBmgJaA9DCJrv4CcOA2FAlIaUUpRoFU3oA2gWR0CKDOKiO/+LdX2UKGgGaAloD0MIMISc9/+RNUCUhpRSlGgVS8hoFkdAihFXTVlPJ3V9lChoBmgJaA9DCPT8aaM6PRPAlIaUUpRoFUvgaBZHQIoRvyEtdzJ1fZQoaAZoCWgPQwhOtoE7UOlfQJSGlFKUaBVN6ANoFkdAihoZ/kNnXnV9lChoBmgJaA9DCMr9DkUBOGFAlIaUUpRoFU3oA2gWR0CKHhTx5LRKdX2UKGgGaAloD0MI95LGaB2HQMCUhpRSlGgVS8NoFkdAimOguAZsK3V9lChoBmgJaA9DCIWwGktYB0BAlIaUUpRoFUvWaBZHQIpr9U6xPft1fZQoaAZoCWgPQwjrHtlcNZ1ZQJSGlFKUaBVN6ANoFkdAimzhrnDBM3V9lChoBmgJaA9DCMqIC0CjDWFAlIaUUpRoFU3oA2gWR0CKdvryDqW1dX2UKGgGaAloD0MIjSRBuAJ0WECUhpRSlGgVTegDaBZHQIp6a22G7Bh1fZQoaAZoCWgPQwjbFfpgGWRcQJSGlFKUaBVN6ANoFkdAioXm16Vt43V9lChoBmgJaA9DCAwDllzF0ijAlIaUUpRoFUvVaBZHQIqaaeqaPS51fZQoaAZoCWgPQwj99J81P74RwJSGlFKUaBVL92gWR0CKnCNDtw71dX2UKGgGaAloD0MIzqW4quy9XUCUhpRSlGgVTegDaBZHQIqh4NEw35x1fZQoaAZoCWgPQwgeUDblipBoQJSGlFKUaBVN6ANoFkdAiqzUALiMpHV9lChoBmgJaA9DCGe4AZ8fqEJAlIaUUpRoFUvKaBZHQIq6god+5OJ1fZQoaAZoCWgPQwgh6GhVS25dQJSGlFKUaBVN6ANoFkdAisCI+GGmDXV9lChoBmgJaA9DCHb7rDJT3F1AlIaUUpRoFU3oA2gWR0CKxBMPjGT+dX2UKGgGaAloD0MIeT2YFB8DV0CUhpRSlGgVTegDaBZHQIrFWFL39Jl1fZQoaAZoCWgPQwh+xRoucmBZQJSGlFKUaBVN6ANoFkdAis/hUrCm/HV9lChoBmgJaA9DCMRBQpQvSVlAlIaUUpRoFU3oA2gWR0CK3HVRUFSsdX2UKGgGaAloD0MIaAkyAirnWUCUhpRSlGgVTegDaBZHQIriLjzZpSJ1fZQoaAZoCWgPQwiE8j6O5k5hQJSGlFKUaBVN6ANoFkdAiutO/tY0VXV9lChoBmgJaA9DCBmSk4nbcWRAlIaUUpRoFU3oA2gWR0CK73lFMIu5dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35183d9f1ab366b2b0ea2b2432cb10fe6f9b00678f2cc5aef0dd5b083ed3e56a
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85083b722bc9bd9df0df7c565079e3e7f84770977a6dac6cf75b1501542744b7
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be56b4cfdcd1f83064034d3ddaaceaff396c1ec3f77650ca2dd42cc24f85dde3
3
+ size 230912
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 228.46533016604903, "std_reward": 23.321067212514528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:48:28.197725"}