File size: 33,765 Bytes
239ee43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 |
import os
import time
import copy
from pathlib import Path
from math import ceil
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from collections.abc import Iterable
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import random_split, DataLoader
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.cuda.amp import autocast, GradScaler
import pytorch_warmup as warmup
from imagen_pytorch.imagen_pytorch import Imagen, NullUnet
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
from imagen_pytorch.data import cycle
from imagen_pytorch.version import __version__
from packaging import version
import numpy as np
from ema_pytorch import EMA
from accelerate import Accelerator, DistributedType, DistributedDataParallelKwargs
from fsspec.core import url_to_fs
from fsspec.implementations.local import LocalFileSystem
# helper functions
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else ((val,) * length)
def find_first(fn, arr):
for ind, el in enumerate(arr):
if fn(el):
return ind
return -1
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
# url to fs, bucket, path - for checkpointing to cloud
def url_to_bucket(url):
if '://' not in url:
return url
_, suffix = url.split('://')
if prefix in {'gs', 's3'}:
return suffix.split('/')[0]
else:
raise ValueError(f'storage type prefix "{prefix}" is not supported yet')
# decorators
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def cast_torch_tensor(fn, cast_fp16 = False):
@wraps(fn)
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', model.device)
cast_device = kwargs.pop('_cast_device', True)
should_cast_fp16 = cast_fp16 and model.cast_half_at_training
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
split_kwargs_index = len(all_args) - len(kwargs_keys)
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
if should_cast_fp16:
all_args = tuple(map(lambda t: t.half() if exists(t) and isinstance(t, torch.Tensor) and t.dtype != torch.bool else t, all_args))
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
out = fn(model, *args, **kwargs)
return out
return inner
# gradient accumulation functions
def split_iterable(it, split_size):
accum = []
for ind in range(ceil(len(it) / split_size)):
start_index = ind * split_size
accum.append(it[start_index: (start_index + split_size)])
return accum
def split(t, split_size = None):
if not exists(split_size):
return t
if isinstance(t, torch.Tensor):
return t.split(split_size, dim = 0)
if isinstance(t, Iterable):
return split_iterable(t, split_size)
return TypeError
def find_first(cond, arr):
for el in arr:
if cond(el):
return el
return None
def split_args_and_kwargs(*args, split_size = None, **kwargs):
all_args = (*args, *kwargs.values())
len_all_args = len(all_args)
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
assert exists(first_tensor)
batch_size = len(first_tensor)
split_size = default(split_size, batch_size)
num_chunks = ceil(batch_size / split_size)
dict_len = len(kwargs)
dict_keys = kwargs.keys()
split_kwargs_index = len_all_args - dict_len
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
chunk_sizes = num_to_groups(batch_size, split_size)
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# imagen trainer
def imagen_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
if self.imagen.unconditional:
batch_size = kwargs.get('batch_size')
batch_sizes = num_to_groups(batch_size, max_batch_size)
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
else:
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
if isinstance(outputs[0], torch.Tensor):
return torch.cat(outputs, dim = 0)
return list(map(lambda t: torch.cat(t, dim = 0), list(zip(*outputs))))
return inner
def restore_parts(state_dict_target, state_dict_from):
for name, param in state_dict_from.items():
if name not in state_dict_target:
continue
if param.size() == state_dict_target[name].size():
state_dict_target[name].copy_(param)
else:
print(f"layer {name}({param.size()} different than target: {state_dict_target[name].size()}")
return state_dict_target
class ImagenTrainer(nn.Module):
locked = False
def __init__(
self,
imagen = None,
imagen_checkpoint_path = None,
use_ema = True,
lr = 1e-4,
eps = 1e-8,
beta1 = 0.9,
beta2 = 0.99,
max_grad_norm = None,
group_wd_params = True,
warmup_steps = None,
cosine_decay_max_steps = None,
only_train_unet_number = None,
fp16 = False,
precision = None,
split_batches = True,
dl_tuple_output_keywords_names = ('images', 'text_embeds', 'text_masks', 'cond_images'),
verbose = True,
split_valid_fraction = 0.025,
split_valid_from_train = False,
split_random_seed = 42,
checkpoint_path = None,
checkpoint_every = None,
checkpoint_fs = None,
fs_kwargs: dict = None,
max_checkpoints_keep = 20,
**kwargs
):
super().__init__()
assert not ImagenTrainer.locked, 'ImagenTrainer can only be initialized once per process - for the sake of distributed training, you will now have to create a separate script to train each unet (or a script that accepts unet number as an argument)'
assert exists(imagen) ^ exists(imagen_checkpoint_path), 'either imagen instance is passed into the trainer, or a checkpoint path that contains the imagen config'
# determine filesystem, using fsspec, for saving to local filesystem or cloud
self.fs = checkpoint_fs
if not exists(self.fs):
fs_kwargs = default(fs_kwargs, {})
self.fs, _ = url_to_fs(default(checkpoint_path, './'), **fs_kwargs)
assert isinstance(imagen, (Imagen, ElucidatedImagen))
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
# elucidated or not
self.is_elucidated = isinstance(imagen, ElucidatedImagen)
# create accelerator instance
accelerate_kwargs, kwargs = groupby_prefix_and_trim('accelerate_', kwargs)
assert not (fp16 and exists(precision)), 'either set fp16 = True or forward the precision ("fp16", "bf16") to Accelerator'
accelerator_mixed_precision = default(precision, 'fp16' if fp16 else 'no')
self.accelerator = Accelerator(**{
'split_batches': split_batches,
'mixed_precision': accelerator_mixed_precision,
'kwargs_handlers': [DistributedDataParallelKwargs(find_unused_parameters = True)]
, **accelerate_kwargs})
ImagenTrainer.locked = self.is_distributed
# cast data to fp16 at training time if needed
self.cast_half_at_training = accelerator_mixed_precision == 'fp16'
# grad scaler must be managed outside of accelerator
grad_scaler_enabled = fp16
# imagen, unets and ema unets
self.imagen = imagen
self.num_unets = len(self.imagen.unets)
self.use_ema = use_ema and self.is_main
self.ema_unets = nn.ModuleList([])
# keep track of what unet is being trained on
# only going to allow 1 unet training at a time
self.ema_unet_being_trained_index = -1 # keeps track of which ema unet is being trained on
# data related functions
self.train_dl_iter = None
self.train_dl = None
self.valid_dl_iter = None
self.valid_dl = None
self.dl_tuple_output_keywords_names = dl_tuple_output_keywords_names
# auto splitting validation from training, if dataset is passed in
self.split_valid_from_train = split_valid_from_train
assert 0 <= split_valid_fraction <= 1, 'split valid fraction must be between 0 and 1'
self.split_valid_fraction = split_valid_fraction
self.split_random_seed = split_random_seed
# be able to finely customize learning rate, weight decay
# per unet
lr, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, eps, warmup_steps, cosine_decay_max_steps))
for ind, (unet, unet_lr, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps) in enumerate(zip(self.imagen.unets, lr, eps, warmup_steps, cosine_decay_max_steps)):
optimizer = Adam(
unet.parameters(),
lr = unet_lr,
eps = unet_eps,
betas = (beta1, beta2),
**kwargs
)
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = grad_scaler_enabled)
scheduler = warmup_scheduler = None
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
if exists(unet_warmup_steps):
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps)
if not exists(scheduler):
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
# set on object
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
setattr(self, f'scaler{ind}', scaler)
setattr(self, f'scheduler{ind}', scheduler)
setattr(self, f'warmup{ind}', warmup_scheduler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
# step tracker and misc
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
self.verbose = verbose
# automatic set devices based on what accelerator decided
self.imagen.to(self.device)
self.to(self.device)
# checkpointing
assert not (exists(checkpoint_path) ^ exists(checkpoint_every))
self.checkpoint_path = checkpoint_path
self.checkpoint_every = checkpoint_every
self.max_checkpoints_keep = max_checkpoints_keep
self.can_checkpoint = self.is_local_main if isinstance(checkpoint_fs, LocalFileSystem) else self.is_main
if exists(checkpoint_path) and self.can_checkpoint:
bucket = url_to_bucket(checkpoint_path)
if not self.fs.exists(bucket):
self.fs.mkdir(bucket)
self.load_from_checkpoint_folder()
# only allowing training for unet
self.only_train_unet_number = only_train_unet_number
self.prepared = False
def prepare(self):
assert not self.prepared, f'The trainer is allready prepared'
self.validate_and_set_unet_being_trained(self.only_train_unet_number)
self.prepared = True
# computed values
@property
def device(self):
return self.accelerator.device
@property
def is_distributed(self):
return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1)
@property
def is_main(self):
return self.accelerator.is_main_process
@property
def is_local_main(self):
return self.accelerator.is_local_main_process
@property
def unwrapped_unet(self):
return self.accelerator.unwrap_model(self.unet_being_trained)
# optimizer helper functions
def get_lr(self, unet_number):
self.validate_unet_number(unet_number)
unet_index = unet_number - 1
optim = getattr(self, f'optim{unet_index}')
return optim.param_groups[0]['lr']
# function for allowing only one unet from being trained at a time
def validate_and_set_unet_being_trained(self, unet_number = None):
if exists(unet_number):
self.validate_unet_number(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you cannot only train on one unet at a time. you will need to save the trainer into a checkpoint, and resume training on a new unet'
self.only_train_unet_number = unet_number
self.imagen.only_train_unet_number = unet_number
if not exists(unet_number):
return
self.wrap_unet(unet_number)
def wrap_unet(self, unet_number):
if hasattr(self, 'one_unet_wrapped'):
return
unet = self.imagen.get_unet(unet_number)
unet_index = unet_number - 1
optimizer = getattr(self, f'optim{unet_index}')
scheduler = getattr(self, f'scheduler{unet_index}')
if self.train_dl:
self.unet_being_trained, self.train_dl, optimizer = self.accelerator.prepare(unet, self.train_dl, optimizer)
else:
self.unet_being_trained, optimizer = self.accelerator.prepare(unet, optimizer)
if exists(scheduler):
scheduler = self.accelerator.prepare(scheduler)
setattr(self, f'optim{unet_index}', optimizer)
setattr(self, f'scheduler{unet_index}', scheduler)
self.one_unet_wrapped = True
# hacking accelerator due to not having separate gradscaler per optimizer
def set_accelerator_scaler(self, unet_number):
def patch_optimizer_step(accelerated_optimizer, method):
def patched_step(*args, **kwargs):
accelerated_optimizer._accelerate_step_called = True
return method(*args, **kwargs)
return patched_step
unet_number = self.validate_unet_number(unet_number)
scaler = getattr(self, f'scaler{unet_number - 1}')
self.accelerator.scaler = scaler
for optimizer in self.accelerator._optimizers:
optimizer.scaler = scaler
optimizer._accelerate_step_called = False
optimizer._optimizer_original_step_method = optimizer.optimizer.step
optimizer._optimizer_patched_step_method = patch_optimizer_step(optimizer, optimizer.optimizer.step)
# helper print
def print(self, msg):
if not self.is_main:
return
if not self.verbose:
return
return self.accelerator.print(msg)
# validating the unet number
def validate_unet_number(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert 0 < unet_number <= self.num_unets, f'unet number should be in between 1 and {self.num_unets}'
return unet_number
# number of training steps taken
def num_steps_taken(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
return self.steps[unet_number - 1].item()
def print_untrained_unets(self):
print_final_error = False
for ind, (steps, unet) in enumerate(zip(self.steps.tolist(), self.imagen.unets)):
if steps > 0 or isinstance(unet, NullUnet):
continue
self.print(f'unet {ind + 1} has not been trained')
print_final_error = True
if print_final_error:
self.print('when sampling, you can pass stop_at_unet_number to stop early in the cascade, so it does not try to generate with untrained unets')
# data related functions
def add_train_dataloader(self, dl = None):
if not exists(dl):
return
assert not exists(self.train_dl), 'training dataloader was already added'
assert not self.prepared, f'You need to add the dataset before preperation'
self.train_dl = dl
def add_valid_dataloader(self, dl):
if not exists(dl):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
assert not self.prepared, f'You need to add the dataset before preperation'
self.valid_dl = dl
def add_train_dataset(self, ds = None, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.train_dl), 'training dataloader was already added'
valid_ds = None
if self.split_valid_from_train:
train_size = int((1 - self.split_valid_fraction) * len(ds))
valid_size = len(ds) - train_size
ds, valid_ds = random_split(ds, [train_size, valid_size], generator = torch.Generator().manual_seed(self.split_random_seed))
self.print(f'training with dataset of {len(ds)} samples and validating with randomly splitted {len(valid_ds)} samples')
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.add_train_dataloader(dl)
if not self.split_valid_from_train:
return
self.add_valid_dataset(valid_ds, batch_size = batch_size, **dl_kwargs)
def add_valid_dataset(self, ds, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.add_valid_dataloader(dl)
def create_train_iter(self):
assert exists(self.train_dl), 'training dataloader has not been registered with the trainer yet'
if exists(self.train_dl_iter):
return
self.train_dl_iter = cycle(self.train_dl)
def create_valid_iter(self):
assert exists(self.valid_dl), 'validation dataloader has not been registered with the trainer yet'
if exists(self.valid_dl_iter):
return
self.valid_dl_iter = cycle(self.valid_dl)
def train_step(self, *, unet_number = None, **kwargs):
if not self.prepared:
self.prepare()
self.create_train_iter()
kwargs = {'unet_number': unet_number, **kwargs}
loss = self.step_with_dl_iter(self.train_dl_iter, **kwargs)
self.update(unet_number = unet_number)
return loss
@torch.no_grad()
@eval_decorator
def valid_step(self, **kwargs):
if not self.prepared:
self.prepare()
self.create_valid_iter()
context = self.use_ema_unets if kwargs.pop('use_ema_unets', False) else nullcontext
with context():
loss = self.step_with_dl_iter(self.valid_dl_iter, **kwargs)
return loss
def step_with_dl_iter(self, dl_iter, **kwargs):
dl_tuple_output = cast_tuple(next(dl_iter))
model_input = dict(list(zip(self.dl_tuple_output_keywords_names, dl_tuple_output)))
loss = self.forward(**{**kwargs, **model_input})
return loss
# checkpointing functions
@property
def all_checkpoints_sorted(self):
glob_pattern = os.path.join(self.checkpoint_path, '*.pt')
checkpoints = self.fs.glob(glob_pattern)
sorted_checkpoints = sorted(checkpoints, key = lambda x: int(str(x).split('.')[-2]), reverse = True)
return sorted_checkpoints
def load_from_checkpoint_folder(self, last_total_steps = -1):
if last_total_steps != -1:
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{last_total_steps}.pt')
self.load(filepath)
return
sorted_checkpoints = self.all_checkpoints_sorted
if len(sorted_checkpoints) == 0:
self.print(f'no checkpoints found to load from at {self.checkpoint_path}')
return
last_checkpoint = sorted_checkpoints[0]
self.load(last_checkpoint)
def save_to_checkpoint_folder(self):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
total_steps = int(self.steps.sum().item())
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{total_steps}.pt')
self.save(filepath)
if self.max_checkpoints_keep <= 0:
return
sorted_checkpoints = self.all_checkpoints_sorted
checkpoints_to_discard = sorted_checkpoints[self.max_checkpoints_keep:]
for checkpoint in checkpoints_to_discard:
self.fs.rm(checkpoint)
# saving and loading functions
def save(
self,
path,
overwrite = True,
without_optim_and_sched = False,
**kwargs
):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
fs = self.fs
assert not (fs.exists(path) and not overwrite)
self.reset_ema_unets_all_one_device()
save_obj = dict(
model = self.imagen.state_dict(),
version = __version__,
steps = self.steps.cpu(),
**kwargs
)
save_optim_and_sched_iter = range(0, self.num_unets) if not without_optim_and_sched else tuple()
for ind in save_optim_and_sched_iter:
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler):
save_obj = {**save_obj, scheduler_key: scheduler.state_dict()}
if exists(warmup_scheduler):
save_obj = {**save_obj, warmup_scheduler_key: warmup_scheduler.state_dict()}
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
# determine if imagen config is available
if hasattr(self.imagen, '_config'):
self.print(f'this checkpoint is commandable from the CLI - "imagen --model {str(path)} \"<prompt>\""')
save_obj = {
**save_obj,
'imagen_type': 'elucidated' if self.is_elucidated else 'original',
'imagen_params': self.imagen._config
}
#save to path
with fs.open(path, 'wb') as f:
torch.save(save_obj, f)
self.print(f'checkpoint saved to {path}')
def load(self, path, only_model = False, strict = True, noop_if_not_exist = False):
fs = self.fs
if noop_if_not_exist and not fs.exists(path):
self.print(f'trainer checkpoint not found at {str(path)}')
return
assert fs.exists(path), f'{path} does not exist'
self.reset_ema_unets_all_one_device()
# to avoid extra GPU memory usage in main process when using Accelerate
with fs.open(path) as f:
loaded_obj = torch.load(f, map_location='cpu')
if version.parse(__version__) != version.parse(loaded_obj['version']):
self.print(f'loading saved imagen at version {loaded_obj["version"]}, but current package version is {__version__}')
try:
self.imagen.load_state_dict(loaded_obj['model'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.imagen.load_state_dict(restore_parts(self.imagen.state_dict(),
loaded_obj['model']))
if only_model:
return loaded_obj
self.steps.copy_(loaded_obj['steps'])
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler) and scheduler_key in loaded_obj:
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler) and warmup_scheduler_key in loaded_obj:
warmup_scheduler.load_state_dict(loaded_obj[warmup_scheduler_key])
if exists(optimizer):
try:
optimizer.load_state_dict(loaded_obj[optimizer_key])
scaler.load_state_dict(loaded_obj[scaler_key])
except:
self.print('could not load optimizer and scaler, possibly because you have turned on mixed precision training since the last run. resuming with new optimizer and scalers')
if self.use_ema:
assert 'ema' in loaded_obj
try:
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.ema_unets.load_state_dict(restore_parts(self.ema_unets.state_dict(),
loaded_obj['ema']))
self.print(f'checkpoint loaded from {path}')
return loaded_obj
# managing ema unets and their devices
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def get_ema_unet(self, unet_number = None):
if not self.use_ema:
return
unet_number = self.validate_unet_number(unet_number)
index = unet_number - 1
if isinstance(self.unets, nn.ModuleList):
unets_list = [unet for unet in self.ema_unets]
delattr(self, 'ema_unets')
self.ema_unets = unets_list
if index != self.ema_unet_being_trained_index:
for unet_index, unet in enumerate(self.ema_unets):
unet.to(self.device if unet_index == index else 'cpu')
self.ema_unet_being_trained_index = index
return self.ema_unets[index]
def reset_ema_unets_all_one_device(self, device = None):
if not self.use_ema:
return
device = default(device, self.device)
self.ema_unets = nn.ModuleList([*self.ema_unets])
self.ema_unets.to(device)
self.ema_unet_being_trained_index = -1
@torch.no_grad()
@contextmanager
def use_ema_unets(self):
if not self.use_ema:
output = yield
return output
self.reset_ema_unets_all_one_device()
self.imagen.reset_unets_all_one_device()
self.unets.eval()
trainable_unets = self.imagen.unets
self.imagen.unets = self.unets # swap in exponential moving averaged unets for sampling
output = yield
self.imagen.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
ema.restore_ema_model_device()
return output
def print_unet_devices(self):
self.print('unet devices:')
for i, unet in enumerate(self.imagen.unets):
device = next(unet.parameters()).device
self.print(f'\tunet {i}: {device}')
if not self.use_ema:
return
self.print('\nema unet devices:')
for i, ema_unet in enumerate(self.ema_unets):
device = next(ema_unet.parameters()).device
self.print(f'\tema unet {i}: {device}')
# overriding state dict functions
def state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().state_dict(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().load_state_dict(*args, **kwargs)
# encoding text functions
def encode_text(self, text, **kwargs):
return self.imagen.encode_text(text, **kwargs)
# forwarding functions and gradient step updates
def update(self, unet_number = None):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
index = unet_number - 1
unet = self.unet_being_trained
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
scheduler = getattr(self, f'scheduler{index}')
warmup_scheduler = getattr(self, f'warmup{index}')
# set the grad scaler on the accelerator, since we are managing one per u-net
if exists(self.max_grad_norm):
self.accelerator.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if self.use_ema:
ema_unet = self.get_ema_unet(unet_number)
ema_unet.update()
# scheduler, if needed
maybe_warmup_context = nullcontext() if not exists(warmup_scheduler) else warmup_scheduler.dampening()
with maybe_warmup_context:
if exists(scheduler) and not self.accelerator.optimizer_step_was_skipped: # recommended in the docs
scheduler.step()
self.steps += F.one_hot(torch.tensor(unet_number - 1, device = self.steps.device), num_classes = len(self.steps))
if not exists(self.checkpoint_path):
return
total_steps = int(self.steps.sum().item())
if total_steps % self.checkpoint_every:
return
self.save_to_checkpoint_folder()
@torch.no_grad()
@cast_torch_tensor
@imagen_sample_in_chunks
def sample(self, *args, **kwargs):
context = nullcontext if kwargs.pop('use_non_ema', False) else self.use_ema_unets
self.print_untrained_unets()
if not self.is_main:
kwargs['use_tqdm'] = False
with context():
output = self.imagen.sample(*args, device = self.device, **kwargs)
return output
@partial(cast_torch_tensor, cast_fp16 = True)
def forward(
self,
*args,
unet_number = None,
max_batch_size = None,
**kwargs
):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, f'you can only train unet #{self.only_train_unet_number}'
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with self.accelerator.autocast():
loss = self.imagen(*chunked_args, unet = self.unet_being_trained, unet_number = unet_number, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.accelerator.backward(loss)
return total_loss
|