sejamenath2023's picture
Upload 12 files
239ee43
raw
history blame
3.08 kB
import torch
import transformers
from typing import List
from transformers import T5Tokenizer, T5EncoderModel, T5Config
from einops import rearrange
transformers.logging.set_verbosity_error()
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
# config
MAX_LENGTH = 256
DEFAULT_T5_NAME = 'google/t5-v1_1-base'
T5_CONFIGS = {}
# singleton globals
def get_tokenizer(name):
tokenizer = T5Tokenizer.from_pretrained(name, model_max_length=MAX_LENGTH)
return tokenizer
def get_model(name):
model = T5EncoderModel.from_pretrained(name)
return model
def get_model_and_tokenizer(name):
global T5_CONFIGS
if name not in T5_CONFIGS:
T5_CONFIGS[name] = dict()
if "model" not in T5_CONFIGS[name]:
T5_CONFIGS[name]["model"] = get_model(name)
if "tokenizer" not in T5_CONFIGS[name]:
T5_CONFIGS[name]["tokenizer"] = get_tokenizer(name)
return T5_CONFIGS[name]['model'], T5_CONFIGS[name]['tokenizer']
def get_encoded_dim(name):
if name not in T5_CONFIGS:
# avoids loading the model if we only want to get the dim
config = T5Config.from_pretrained(name)
T5_CONFIGS[name] = dict(config=config)
elif "config" in T5_CONFIGS[name]:
config = T5_CONFIGS[name]["config"]
elif "model" in T5_CONFIGS[name]:
config = T5_CONFIGS[name]["model"].config
else:
assert False
return config.d_model
# encoding text
def t5_tokenize(
texts: List[str],
name = DEFAULT_T5_NAME
):
t5, tokenizer = get_model_and_tokenizer(name)
if torch.cuda.is_available():
t5 = t5.cuda()
device = next(t5.parameters()).device
encoded = tokenizer.batch_encode_plus(
texts,
return_tensors = "pt",
padding = 'longest',
max_length = MAX_LENGTH,
truncation = True
)
input_ids = encoded.input_ids.to(device)
attn_mask = encoded.attention_mask.to(device)
return input_ids, attn_mask
def t5_encode_tokenized_text(
token_ids,
attn_mask = None,
pad_id = None,
name = DEFAULT_T5_NAME
):
assert exists(attn_mask) or exists(pad_id)
t5, _ = get_model_and_tokenizer(name)
attn_mask = default(attn_mask, lambda: (token_ids != pad_id).long())
t5.eval()
with torch.no_grad():
output = t5(input_ids = token_ids, attention_mask = attn_mask)
encoded_text = output.last_hidden_state.detach()
attn_mask = attn_mask.bool()
encoded_text = encoded_text.masked_fill(~rearrange(attn_mask, '... -> ... 1'), 0.) # just force all embeddings that is padding to be equal to 0.
return encoded_text
def t5_encode_text(
texts: List[str],
name = DEFAULT_T5_NAME,
return_attn_mask = False
):
token_ids, attn_mask = t5_tokenize(texts, name = name)
encoded_text = t5_encode_tokenized_text(token_ids, attn_mask = attn_mask, name = name)
if return_attn_mask:
attn_mask = attn_mask.bool()
return encoded_text, attn_mask
return encoded_text