--- base_model: BAAI/bge-small-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'I have owned this NAS for almost a year now and actually purchased a second one It works flawlessly and QNAP live tech support is superb There is also a fairly comprehensive forum for users as well I have slowly upgraded my capacities as newer larger capacity drives have come out on the market All have been recognized and the space expanded without a hitch I highly recommend this product ' - text: Good as expected - text: 'This is a very good video editing package In the past I ve only used Corel video editing products but Cyberlink s offering is on par It offers similar options but they are different enough for me to want to use both products depending on what I m trying to achieve There are quick uploading options that make it very easy to get video onto Youtube and other online video sites ' - text: Works great - text: 'This is my favorite crack open the computer and amuse myself for a few hours software Easy to pick up if you have no prior experience with computer animation but advanced enough that someone with the right skills could pull together an impressive movie ' inference: true --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("selina09/yt_setfit") # Run inference preds = model("Works great") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 34.9207 | 102 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 123 | | 1 | 41 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0019 | 1 | 0.2503 | - | | 0.0942 | 50 | 0.2406 | - | | 0.1883 | 100 | 0.2029 | - | | 0.2825 | 150 | 0.2207 | - | | 0.3766 | 200 | 0.1612 | - | | 0.4708 | 250 | 0.0725 | - | | 0.5650 | 300 | 0.0163 | - | | 0.6591 | 350 | 0.0108 | - | | 0.7533 | 400 | 0.0153 | - | | 0.8475 | 450 | 0.0486 | - | | 0.9416 | 500 | 0.0191 | - | | 1.0358 | 550 | 0.0207 | - | | 1.1299 | 600 | 0.0148 | - | | 1.2241 | 650 | 0.0031 | - | | 1.3183 | 700 | 0.001 | - | | 1.4124 | 750 | 0.0287 | - | | 1.5066 | 800 | 0.0146 | - | | 1.6008 | 850 | 0.0147 | - | | 1.6949 | 900 | 0.0165 | - | | 1.7891 | 950 | 0.0008 | - | | 1.8832 | 1000 | 0.0165 | - | | 1.9774 | 1050 | 0.0007 | - | | 2.0716 | 1100 | 0.0129 | - | | 2.1657 | 1150 | 0.0143 | - | | 2.2599 | 1200 | 0.0006 | - | | 2.3540 | 1250 | 0.0008 | - | | 2.4482 | 1300 | 0.0047 | - | | 2.5424 | 1350 | 0.0005 | - | | 2.6365 | 1400 | 0.0116 | - | | 2.7307 | 1450 | 0.0093 | - | | 2.8249 | 1500 | 0.0211 | - | | 2.9190 | 1550 | 0.0076 | - | | 3.0132 | 1600 | 0.0047 | - | | 3.1073 | 1650 | 0.0005 | - | | 3.2015 | 1700 | 0.0064 | - | | 3.2957 | 1750 | 0.014 | - | | 3.3898 | 1800 | 0.0479 | - | | 3.4840 | 1850 | 0.0005 | - | | 3.5782 | 1900 | 0.0045 | - | | 3.6723 | 1950 | 0.0188 | - | | 3.7665 | 2000 | 0.0004 | - | | 3.8606 | 2050 | 0.0122 | - | | 3.9548 | 2100 | 0.0004 | - | | 4.0490 | 2150 | 0.008 | - | | 4.1431 | 2200 | 0.0245 | - | | 4.2373 | 2250 | 0.005 | - | | 4.3315 | 2300 | 0.0244 | - | | 4.4256 | 2350 | 0.0208 | - | | 4.5198 | 2400 | 0.0237 | - | | 4.6139 | 2450 | 0.0005 | - | | 4.7081 | 2500 | 0.0004 | - | | 4.8023 | 2550 | 0.02 | - | | 4.8964 | 2600 | 0.0004 | - | | 4.9906 | 2650 | 0.0067 | - | | 5.0847 | 2700 | 0.0099 | - | | 5.1789 | 2750 | 0.0138 | - | | 5.2731 | 2800 | 0.0192 | - | | 5.3672 | 2850 | 0.0217 | - | | 5.4614 | 2900 | 0.0056 | - | | 5.5556 | 2950 | 0.0003 | - | | 5.6497 | 3000 | 0.0052 | - | | 5.7439 | 3050 | 0.0123 | - | | 5.8380 | 3100 | 0.0136 | - | | 5.9322 | 3150 | 0.0221 | - | | 6.0264 | 3200 | 0.0235 | - | | 6.1205 | 3250 | 0.0144 | - | | 6.2147 | 3300 | 0.0174 | - | | 6.3089 | 3350 | 0.007 | - | | 6.4030 | 3400 | 0.0044 | - | | 6.4972 | 3450 | 0.0003 | - | | 6.5913 | 3500 | 0.007 | - | | 6.6855 | 3550 | 0.0004 | - | | 6.7797 | 3600 | 0.0384 | - | | 6.8738 | 3650 | 0.0055 | - | | 6.9680 | 3700 | 0.0056 | - | | 7.0621 | 3750 | 0.0118 | - | | 7.1563 | 3800 | 0.0143 | - | | 7.2505 | 3850 | 0.0289 | - | | 7.3446 | 3900 | 0.0301 | - | | 7.4388 | 3950 | 0.0119 | - | | 7.5330 | 4000 | 0.012 | - | | 7.6271 | 4050 | 0.0138 | - | | 7.7213 | 4100 | 0.0148 | - | | 7.8154 | 4150 | 0.0003 | - | | 7.9096 | 4200 | 0.0268 | - | | 8.0038 | 4250 | 0.0131 | - | | 8.0979 | 4300 | 0.0237 | - | | 8.1921 | 4350 | 0.0004 | - | | 8.2863 | 4400 | 0.0211 | - | | 8.3804 | 4450 | 0.0092 | - | | 8.4746 | 4500 | 0.005 | - | | 8.5687 | 4550 | 0.0056 | - | | 8.6629 | 4600 | 0.0168 | - | | 8.7571 | 4650 | 0.0045 | - | | 8.8512 | 4700 | 0.0184 | - | | 8.9454 | 4750 | 0.0049 | - | | 9.0395 | 4800 | 0.0047 | - | | 9.1337 | 4850 | 0.0099 | - | | 9.2279 | 4900 | 0.0054 | - | | 9.3220 | 4950 | 0.0185 | - | | 9.4162 | 5000 | 0.005 | - | | 9.5104 | 5050 | 0.0004 | - | | 9.6045 | 5100 | 0.013 | - | | 9.6987 | 5150 | 0.0002 | - | | 9.7928 | 5200 | 0.0187 | - | | 9.8870 | 5250 | 0.0003 | - | | 9.9812 | 5300 | 0.0081 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.40.2 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```