--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3884297520661157 --- # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.9670 - Wer Ortho: 0.3825 - Wer: 0.3884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.1121 | 35.71 | 500 | 0.7395 | 0.3646 | 0.3660 | | 0.0526 | 71.43 | 1000 | 0.8020 | 0.3615 | 0.3619 | | 0.0263 | 107.14 | 1500 | 0.8685 | 0.3769 | 0.3790 | | 0.0162 | 142.86 | 2000 | 0.9158 | 0.3782 | 0.3825 | | 0.0152 | 178.57 | 2500 | 0.9300 | 0.3800 | 0.3831 | | 0.0138 | 214.29 | 3000 | 0.9595 | 0.3905 | 0.3926 | | 0.0127 | 250.0 | 3500 | 0.9687 | 0.3899 | 0.3949 | | 0.0119 | 285.71 | 4000 | 0.9670 | 0.3825 | 0.3884 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3