upload
Browse files- 1_Pooling/config.json +7 -0
- README.md +151 -0
- config.json +23 -0
- config_sentence_transformers.json +7 -0
- data_config.json +601 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_script.py +344 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
language: en
|
8 |
+
license: apache-2.0
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# all-mpnet-base-v1
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
17 |
+
|
18 |
+
```
|
19 |
+
pip install -U sentence-transformers
|
20 |
+
```
|
21 |
+
|
22 |
+
Then you can use the model like this:
|
23 |
+
```python
|
24 |
+
from sentence_transformers import SentenceTransformer
|
25 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
26 |
+
|
27 |
+
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v1')
|
28 |
+
embeddings = model.encode(sentences)
|
29 |
+
print(embeddings)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Usage (HuggingFace Transformers)
|
33 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import AutoTokenizer, AutoModel
|
37 |
+
import torch
|
38 |
+
import torch.nn.functional as F
|
39 |
+
|
40 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
41 |
+
def mean_pooling(model_output, attention_mask):
|
42 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
43 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
44 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
45 |
+
|
46 |
+
|
47 |
+
# Sentences we want sentence embeddings for
|
48 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
49 |
+
|
50 |
+
# Load model from HuggingFace Hub
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v1')
|
52 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v1')
|
53 |
+
|
54 |
+
# Tokenize sentences
|
55 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
56 |
+
|
57 |
+
# Compute token embeddings
|
58 |
+
with torch.no_grad():
|
59 |
+
model_output = model(**encoded_input)
|
60 |
+
|
61 |
+
# Perform pooling
|
62 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
63 |
+
|
64 |
+
# Normalize embeddings
|
65 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
66 |
+
|
67 |
+
print("Sentence embeddings:")
|
68 |
+
print(sentence_embeddings)
|
69 |
+
```
|
70 |
+
|
71 |
+
## Evaluation Results
|
72 |
+
|
73 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v1)
|
74 |
+
|
75 |
+
------
|
76 |
+
|
77 |
+
## Background
|
78 |
+
|
79 |
+
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
80 |
+
contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
|
81 |
+
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
82 |
+
|
83 |
+
We developped this model during the
|
84 |
+
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
|
85 |
+
organized by Hugging Face. We developped this model as part of the project:
|
86 |
+
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
|
87 |
+
|
88 |
+
## Intended uses
|
89 |
+
|
90 |
+
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
|
91 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
92 |
+
|
93 |
+
By default, input text longer than 128 word pieces is truncated.
|
94 |
+
|
95 |
+
|
96 |
+
## Training procedure
|
97 |
+
|
98 |
+
### Pre-training
|
99 |
+
|
100 |
+
We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure.
|
101 |
+
|
102 |
+
### Fine-tuning
|
103 |
+
|
104 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
|
105 |
+
We then apply the cross entropy loss by comparing with true pairs.
|
106 |
+
|
107 |
+
#### Hyper parameters
|
108 |
+
|
109 |
+
We trained ou model on a TPU v3-8. We train the model during 920k steps using a batch size of 512 (64 per TPU core).
|
110 |
+
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
111 |
+
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
112 |
+
|
113 |
+
#### Training data
|
114 |
+
|
115 |
+
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
|
116 |
+
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
|
117 |
+
|
118 |
+
|
119 |
+
| Dataset | Paper | Number of training tuples |
|
120 |
+
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
|
121 |
+
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
122 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
123 |
+
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
124 |
+
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
125 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
126 |
+
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
127 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
128 |
+
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
129 |
+
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
130 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
131 |
+
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
132 |
+
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
133 |
+
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
134 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
135 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
136 |
+
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
137 |
+
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
138 |
+
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
139 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
140 |
+
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
141 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
142 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
143 |
+
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
144 |
+
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
145 |
+
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
146 |
+
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
147 |
+
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
148 |
+
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
149 |
+
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
150 |
+
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
151 |
+
| **Total** | | **1,124,818,467** |
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/all_datasets_v3_mpnet-base/120000",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"transformers_version": "4.8.2",
|
22 |
+
"vocab_size": 30527
|
23 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
data_config.json
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"name": "stackexchange_title_body/skeptics.stackexchange.com.jsonl.gz",
|
4 |
+
"lines": 10009,
|
5 |
+
"weight": 1
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"name": "stackexchange_title_body/writers.stackexchange.com.jsonl.gz",
|
9 |
+
"lines": 10157,
|
10 |
+
"weight": 1
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"name": "stackexchange_title_body/astronomy.stackexchange.com.jsonl.gz",
|
14 |
+
"lines": 10462,
|
15 |
+
"weight": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "stackexchange_title_body/vi.stackexchange.com.jsonl.gz",
|
19 |
+
"lines": 10551,
|
20 |
+
"weight": 1
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"name": "stackexchange_title_body/cstheory.stackexchange.com.jsonl.gz",
|
24 |
+
"lines": 10642,
|
25 |
+
"weight": 1
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"name": "stackexchange_title_body/engineering.stackexchange.com.jsonl.gz",
|
29 |
+
"lines": 10753,
|
30 |
+
"weight": 1
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "stackexchange_title_body/french.stackexchange.com.jsonl.gz",
|
34 |
+
"lines": 10794,
|
35 |
+
"weight": 1
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stackexchange_title_body/economics.stackexchange.com.jsonl.gz",
|
39 |
+
"lines": 11115,
|
40 |
+
"weight": 1
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"name": "stackexchange_title_body/anime.stackexchange.com.jsonl.gz",
|
44 |
+
"lines": 11444,
|
45 |
+
"weight": 1
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"name": "stackexchange_title_body/islam.stackexchange.com.jsonl.gz",
|
49 |
+
"lines": 11853,
|
50 |
+
"weight": 1
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"name": "stackexchange_title_body/expressionengine.stackexchange.com.jsonl.gz",
|
54 |
+
"lines": 11866,
|
55 |
+
"weight": 1
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "stackexchange_title_body/politics.stackexchange.com.jsonl.gz",
|
59 |
+
"lines": 11894,
|
60 |
+
"weight": 1
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"name": "stackexchange_title_body/history.stackexchange.com.jsonl.gz",
|
64 |
+
"lines": 12021,
|
65 |
+
"weight": 1
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"name": "stackexchange_title_body/christianity.stackexchange.com.jsonl.gz",
|
69 |
+
"lines": 12108,
|
70 |
+
"weight": 1
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"name": "stackexchange_title_body/boardgames.stackexchange.com.jsonl.gz",
|
74 |
+
"lines": 12149,
|
75 |
+
"weight": 1
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"name": "stackexchange_title_body/civicrm.stackexchange.com.jsonl.gz",
|
79 |
+
"lines": 12543,
|
80 |
+
"weight": 1
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"name": "stackexchange_title_body/craftcms.stackexchange.com.jsonl.gz",
|
84 |
+
"lines": 12574,
|
85 |
+
"weight": 1
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"name": "stackexchange_title_body/hinduism.stackexchange.com.jsonl.gz",
|
89 |
+
"lines": 13450,
|
90 |
+
"weight": 1
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"name": "stackexchange_title_body/networkengineering.stackexchange.com.jsonl.gz",
|
94 |
+
"lines": 13454,
|
95 |
+
"weight": 1
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"name": "stackexchange_title_body/german.stackexchange.com.jsonl.gz",
|
99 |
+
"lines": 13950,
|
100 |
+
"weight": 1
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"name": "stackexchange_title_body/philosophy.stackexchange.com.jsonl.gz",
|
104 |
+
"lines": 14829,
|
105 |
+
"weight": 1
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"name": "stackexchange_title_body/gardening.stackexchange.com.jsonl.gz",
|
109 |
+
"lines": 15136,
|
110 |
+
"weight": 1
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"name": "stackexchange_title_body/space.stackexchange.com.jsonl.gz",
|
114 |
+
"lines": 15142,
|
115 |
+
"weight": 1
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"name": "stackexchange_title_body/bicycles.stackexchange.com.jsonl.gz",
|
119 |
+
"lines": 16353,
|
120 |
+
"weight": 1
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "stackexchange_title_body/quant.stackexchange.com.jsonl.gz",
|
124 |
+
"lines": 17261,
|
125 |
+
"weight": 1
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"name": "stackexchange_title_body/puzzling.stackexchange.com.jsonl.gz",
|
129 |
+
"lines": 17851,
|
130 |
+
"weight": 1
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"name": "stackexchange_title_body/law.stackexchange.com.jsonl.gz",
|
134 |
+
"lines": 17941,
|
135 |
+
"weight": 1
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"name": "stackexchange_title_body/arduino.stackexchange.com.jsonl.gz",
|
139 |
+
"lines": 19553,
|
140 |
+
"weight": 1
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"name": "stackexchange_title_body/aviation.stackexchange.com.jsonl.gz",
|
144 |
+
"lines": 20139,
|
145 |
+
"weight": 1
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"name": "stackexchange_title_body/softwarerecs.stackexchange.com.jsonl.gz",
|
149 |
+
"lines": 20142,
|
150 |
+
"weight": 1
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "stackexchange_title_body/movies.stackexchange.com.jsonl.gz",
|
154 |
+
"lines": 20181,
|
155 |
+
"weight": 1
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"name": "stackexchange_title_body/music.stackexchange.com.jsonl.gz",
|
159 |
+
"lines": 20636,
|
160 |
+
"weight": 1
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"name": "stackexchange_title_body/emacs.stackexchange.com.jsonl.gz",
|
164 |
+
"lines": 21055,
|
165 |
+
"weight": 1
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"name": "stackexchange_title_body/dsp.stackexchange.com.jsonl.gz",
|
169 |
+
"lines": 21252,
|
170 |
+
"weight": 1
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"name": "flickr30k_captions.jsonl.gz",
|
174 |
+
"lines": 317695,
|
175 |
+
"weight": 1
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "coco_captions.jsonl.gz",
|
179 |
+
"lines": 828395,
|
180 |
+
"weight": 1
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"name": "codesearchnet.jsonl.gz",
|
184 |
+
"lines": 1151414,
|
185 |
+
"weight": 1
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"name": "stackexchange_title_body/japanese.stackexchange.com.jsonl.gz",
|
189 |
+
"lines": 22056,
|
190 |
+
"weight": 2
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"name": "stackexchange_title_body/mechanics.stackexchange.com.jsonl.gz",
|
194 |
+
"lines": 22868,
|
195 |
+
"weight": 2
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "stackexchange_title_body/crypto.stackexchange.com.jsonl.gz",
|
199 |
+
"lines": 23231,
|
200 |
+
"weight": 2
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"name": "stackexchange_title_body/cooking.stackexchange.com.jsonl.gz",
|
204 |
+
"lines": 23705,
|
205 |
+
"weight": 2
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"name": "stackexchange_title_body/photo.stackexchange.com.jsonl.gz",
|
209 |
+
"lines": 23753,
|
210 |
+
"weight": 2
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"name": "stackexchange_title_body/workplace.stackexchange.com.jsonl.gz",
|
214 |
+
"lines": 24189,
|
215 |
+
"weight": 2
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "stackexchange_title_body/biology.stackexchange.com.jsonl.gz",
|
219 |
+
"lines": 24447,
|
220 |
+
"weight": 2
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"name": "stackexchange_title_body/bitcoin.stackexchange.com.jsonl.gz",
|
224 |
+
"lines": 25374,
|
225 |
+
"weight": 2
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"name": "stackexchange_title_body/worldbuilding.stackexchange.com.jsonl.gz",
|
229 |
+
"lines": 26763,
|
230 |
+
"weight": 2
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"name": "stackexchange_title_body/datascience.stackexchange.com.jsonl.gz",
|
234 |
+
"lines": 27397,
|
235 |
+
"weight": 2
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "stackexchange_title_body/ux.stackexchange.com.jsonl.gz",
|
239 |
+
"lines": 29403,
|
240 |
+
"weight": 2
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"name": "stackexchange_title_body/webapps.stackexchange.com.jsonl.gz",
|
244 |
+
"lines": 29697,
|
245 |
+
"weight": 2
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"name": "stackexchange_title_body/graphicdesign.stackexchange.com.jsonl.gz",
|
249 |
+
"lines": 30233,
|
250 |
+
"weight": 2
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"name": "stackexchange_title_body/raspberrypi.stackexchange.com.jsonl.gz",
|
254 |
+
"lines": 30625,
|
255 |
+
"weight": 2
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"name": "stackexchange_title_body/money.stackexchange.com.jsonl.gz",
|
259 |
+
"lines": 32021,
|
260 |
+
"weight": 2
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"name": "stackexchange_title_body/judaism.stackexchange.com.jsonl.gz",
|
264 |
+
"lines": 32028,
|
265 |
+
"weight": 2
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"name": "stackexchange_title_body/ethereum.stackexchange.com.jsonl.gz",
|
269 |
+
"lines": 32760,
|
270 |
+
"weight": 2
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"name": "stackexchange_title_body/academia.stackexchange.com.jsonl.gz",
|
274 |
+
"lines": 34331,
|
275 |
+
"weight": 2
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"name": "stackexchange_title_body/chemistry.stackexchange.com.jsonl.gz",
|
279 |
+
"lines": 34506,
|
280 |
+
"weight": 2
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"name": "stackexchange_title_body/webmasters.stackexchange.com.jsonl.gz",
|
284 |
+
"lines": 34559,
|
285 |
+
"weight": 2
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"name": "stackexchange_title_body/meta.stackoverflow.com.jsonl.gz",
|
289 |
+
"lines": 36456,
|
290 |
+
"weight": 2
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"name": "stackexchange_title_body/cs.stackexchange.com.jsonl.gz",
|
294 |
+
"lines": 38314,
|
295 |
+
"weight": 2
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"name": "stackexchange_title_body/travel.stackexchange.com.jsonl.gz",
|
299 |
+
"lines": 41227,
|
300 |
+
"weight": 2
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"name": "stackexchange_title_body/rpg.stackexchange.com.jsonl.gz",
|
304 |
+
"lines": 42303,
|
305 |
+
"weight": 2
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"name": "stackexchange_title_body/codereview.stackexchange.com.jsonl.gz",
|
309 |
+
"lines": 45765,
|
310 |
+
"weight": 3
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"name": "stackexchange_title_body/gamedev.stackexchange.com.jsonl.gz",
|
314 |
+
"lines": 46485,
|
315 |
+
"weight": 3
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"name": "stackexchange_title_body/android.stackexchange.com.jsonl.gz",
|
319 |
+
"lines": 51608,
|
320 |
+
"weight": 3
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"name": "stackexchange_title_body/softwareengineering.stackexchange.com.jsonl.gz",
|
324 |
+
"lines": 53942,
|
325 |
+
"weight": 3
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"name": "stackexchange_title_body/security.stackexchange.com.jsonl.gz",
|
329 |
+
"lines": 58000,
|
330 |
+
"weight": 3
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"name": "stackexchange_title_body/diy.stackexchange.com.jsonl.gz",
|
334 |
+
"lines": 60083,
|
335 |
+
"weight": 3
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"name": "stackexchange_title_body/scifi.stackexchange.com.jsonl.gz",
|
339 |
+
"lines": 61528,
|
340 |
+
"weight": 3
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"name": "stackexchange_title_body/mathematica.stackexchange.com.jsonl.gz",
|
344 |
+
"lines": 73131,
|
345 |
+
"weight": 4
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"name": "TriviaQA_pairs.jsonl.gz",
|
349 |
+
"lines": 73346,
|
350 |
+
"weight": 4
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"name": "stackexchange_title_body/drupal.stackexchange.com.jsonl.gz",
|
354 |
+
"lines": 79717,
|
355 |
+
"weight": 4
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"name": "stackexchange_title_body/blender.stackexchange.com.jsonl.gz",
|
359 |
+
"lines": 80766,
|
360 |
+
"weight": 4
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"name": "stackexchange_title_body/dba.stackexchange.com.jsonl.gz",
|
364 |
+
"lines": 81871,
|
365 |
+
"weight": 4
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"name": "stackexchange_title_body/ell.stackexchange.com.jsonl.gz",
|
369 |
+
"lines": 83271,
|
370 |
+
"weight": 4
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"name": "stackexchange_title_body/meta.stackexchange.com.jsonl.gz",
|
374 |
+
"lines": 83510,
|
375 |
+
"weight": 4
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"name": "squad_pairs.jsonl.gz",
|
379 |
+
"lines": 87599,
|
380 |
+
"weight": 5
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"name": "stackexchange_title_body/gaming.stackexchange.com.jsonl.gz",
|
384 |
+
"lines": 88912,
|
385 |
+
"weight": 5
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"name": "stackexchange_title_body/sharepoint.stackexchange.com.jsonl.gz",
|
389 |
+
"lines": 94011,
|
390 |
+
"weight": 5
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"name": "stackexchange_title_body/magento.stackexchange.com.jsonl.gz",
|
394 |
+
"lines": 99991,
|
395 |
+
"weight": 5
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"name": "NQ-train_pairs.jsonl.gz",
|
399 |
+
"lines": 100231,
|
400 |
+
"weight": 5
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"name": "stackexchange_title_body/wordpress.stackexchange.com.jsonl.gz",
|
404 |
+
"lines": 100474,
|
405 |
+
"weight": 5
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"name": "SimpleWiki.jsonl.gz",
|
409 |
+
"lines": 102225,
|
410 |
+
"weight": 5
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"name": "quora_duplicates_triplets.jsonl.gz",
|
414 |
+
"lines": 103663,
|
415 |
+
"weight": 5
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"name": "stackexchange_title_body/salesforce.stackexchange.com.jsonl.gz",
|
419 |
+
"lines": 105260,
|
420 |
+
"weight": 5
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"name": "stackexchange_title_body/english.stackexchange.com.jsonl.gz",
|
424 |
+
"lines": 109522,
|
425 |
+
"weight": 6
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"name": "stackexchange_title_body/apple.stackexchange.com.jsonl.gz",
|
429 |
+
"lines": 110622,
|
430 |
+
"weight": 6
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"name": "altlex.jsonl.gz",
|
434 |
+
"lines": 112696,
|
435 |
+
"weight": 6
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"name": "stackexchange_title_body/mathoverflow.net.jsonl.gz",
|
439 |
+
"lines": 120851,
|
440 |
+
"weight": 6
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"name": "wikihow.jsonl.gz",
|
444 |
+
"lines": 128542,
|
445 |
+
"weight": 6
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"name": "stackexchange_title_body/gis.stackexchange.com.jsonl.gz",
|
449 |
+
"lines": 131000,
|
450 |
+
"weight": 7
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"name": "stackexchange_title_body/electronics.stackexchange.com.jsonl.gz",
|
454 |
+
"lines": 143582,
|
455 |
+
"weight": 7
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"name": "stackexchange_title_body/physics.stackexchange.com.jsonl.gz",
|
459 |
+
"lines": 173307,
|
460 |
+
"weight": 9
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"name": "stackexchange_title_body/stats.stackexchange.com.jsonl.gz",
|
464 |
+
"lines": 173466,
|
465 |
+
"weight": 9
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"name": "sentence-compression.jsonl.gz",
|
469 |
+
"lines": 180000,
|
470 |
+
"weight": 9
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"name": "stackexchange_title_body/unix.stackexchange.com.jsonl.gz",
|
474 |
+
"lines": 185997,
|
475 |
+
"weight": 9
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"name": "stackexchange_title_body/tex.stackexchange.com.jsonl.gz",
|
479 |
+
"lines": 202954,
|
480 |
+
"weight": 10
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"name": "stackexchange_duplicate_questions_title-body_title-body.jsonl.gz",
|
484 |
+
"lines": 250460,
|
485 |
+
"weight": 12
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"name": "stackexchange_duplicate_questions_body_body.jsonl.gz",
|
489 |
+
"lines": 250519,
|
490 |
+
"weight": 12
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"name": "stackexchange_title_body/serverfault.com.jsonl.gz",
|
494 |
+
"lines": 270904,
|
495 |
+
"weight": 13
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"name": "AllNLI.jsonl.gz",
|
499 |
+
"lines": 277230,
|
500 |
+
"weight": 13
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"name": "stackexchange_duplicate_questions_title_title.jsonl.gz",
|
504 |
+
"lines": 304525,
|
505 |
+
"weight": 15
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"name": "eli5_question_answer.jsonl.gz",
|
509 |
+
"lines": 325475,
|
510 |
+
"weight": 16
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"name": "specter_train_triples.jsonl.gz",
|
514 |
+
"lines": 684100,
|
515 |
+
"weight": 16
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"name": "stackexchange_title_body/askubuntu.com.jsonl.gz",
|
519 |
+
"lines": 347925,
|
520 |
+
"weight": 17
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"name": "stackexchange_title_body/superuser.com.jsonl.gz",
|
524 |
+
"lines": 435463,
|
525 |
+
"weight": 21
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"name": "stackexchange_title_body/small_stackexchanges.jsonl.gz",
|
529 |
+
"lines": 448146,
|
530 |
+
"weight": 21
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"name": "S2ORC_title_abstract.jsonl.gz",
|
534 |
+
"lines": 41769185,
|
535 |
+
"weight": 23
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"name": "S2ORC_citation_pairs.jsonl.gz",
|
539 |
+
"lines": 52603982,
|
540 |
+
"weight": 12
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"name": "S2ORC_citation_pairs_abstract.jsonl.gz",
|
544 |
+
"lines": 116288806,
|
545 |
+
"weight": 12
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"name": "PAQ_pairs.jsonl.gz",
|
549 |
+
"lines": 64371441,
|
550 |
+
"weight": 23
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"name": "WikiAnswers_pairs.jsonl.gz",
|
554 |
+
"lines": 77427422,
|
555 |
+
"weight": 23
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"name": "searchQA_question_top5_snippets_merged.jsonl.gz",
|
559 |
+
"lines": 582261,
|
560 |
+
"weight": 28
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"name": "yahoo_answers_title_question.jsonl.gz",
|
564 |
+
"lines": 659896,
|
565 |
+
"weight": 31
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"name": "yahoo_answers_question_answer.jsonl.gz",
|
569 |
+
"lines": 681164,
|
570 |
+
"weight": 32
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"name": "yahoo_answers_title_answer.jsonl.gz",
|
574 |
+
"lines": 1198260,
|
575 |
+
"weight": 47
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"name": "stackexchange_title_body/math.stackexchange.com.jsonl.gz",
|
579 |
+
"lines": 1338443,
|
580 |
+
"weight": 47
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"name": "gooaq_pairs.jsonl.gz",
|
584 |
+
"lines": 3012496,
|
585 |
+
"weight": 47
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"name": "msmarco-query_passage_negative.jsonl.gz",
|
589 |
+
"lines": 9144553,
|
590 |
+
"weight": 47
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"name": "stackexchange_title_body/stackoverflow.com-Posts.jsonl.gz",
|
594 |
+
"lines": 18562443,
|
595 |
+
"weight": 47
|
596 |
+
},
|
597 |
+
{"name": "reddit/reddit_2015.jsonl.gz", "weight": 50},
|
598 |
+
{"name": "reddit/reddit_2016.jsonl.gz", "weight": 50},
|
599 |
+
{"name": "reddit/reddit_2017.jsonl.gz", "weight": 50},
|
600 |
+
{"name": "reddit/reddit_2018.jsonl.gz", "weight": 50}
|
601 |
+
]
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:879a1f3543bda9609f8ae74c68236cc5049769fcac6fbd68a70aafd6762dca01
|
3 |
+
size 438011953
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "output/all_datasets_v3_mpnet-base/120000", "tokenizer_class": "MPNetTokenizer"}
|
train_script.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Train script for a single file
|
3 |
+
|
4 |
+
Need to set the TPU address first:
|
5 |
+
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
import argparse
|
14 |
+
import gzip
|
15 |
+
import json
|
16 |
+
import logging
|
17 |
+
import tqdm
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
import torch
|
22 |
+
import torch_xla
|
23 |
+
import torch_xla.core
|
24 |
+
import torch_xla.core.functions
|
25 |
+
import torch_xla.core.xla_model as xm
|
26 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
27 |
+
import torch_xla.distributed.parallel_loader as pl
|
28 |
+
import os
|
29 |
+
from shutil import copyfile
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import (
|
33 |
+
AdamW,
|
34 |
+
AutoModel,
|
35 |
+
AutoTokenizer,
|
36 |
+
get_linear_schedule_with_warmup,
|
37 |
+
set_seed,
|
38 |
+
)
|
39 |
+
|
40 |
+
class AutoModelForSentenceEmbedding(nn.Module):
|
41 |
+
def __init__(self, model_name, tokenizer, normalize=True):
|
42 |
+
super(AutoModelForSentenceEmbedding, self).__init__()
|
43 |
+
|
44 |
+
self.model = AutoModel.from_pretrained(model_name)
|
45 |
+
self.normalize = normalize
|
46 |
+
self.tokenizer = tokenizer
|
47 |
+
|
48 |
+
def forward(self, **kwargs):
|
49 |
+
model_output = self.model(**kwargs)
|
50 |
+
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
51 |
+
if self.normalize:
|
52 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
53 |
+
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
def mean_pooling(self, model_output, attention_mask):
|
57 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
58 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
59 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
60 |
+
|
61 |
+
def save_pretrained(self, output_path):
|
62 |
+
if xm.is_master_ordinal():
|
63 |
+
self.tokenizer.save_pretrained(output_path)
|
64 |
+
self.model.config.save_pretrained(output_path)
|
65 |
+
|
66 |
+
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def train_function(index, args, queue):
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
73 |
+
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
74 |
+
|
75 |
+
|
76 |
+
### Train Loop
|
77 |
+
device = xm.xla_device()
|
78 |
+
model = model.to(device)
|
79 |
+
|
80 |
+
# Instantiate optimizer
|
81 |
+
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
82 |
+
|
83 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
84 |
+
optimizer=optimizer,
|
85 |
+
num_warmup_steps=500,
|
86 |
+
num_training_steps=args.steps,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Now we train the model
|
90 |
+
cross_entropy_loss = nn.CrossEntropyLoss()
|
91 |
+
max_grad_norm = 1
|
92 |
+
|
93 |
+
model.train()
|
94 |
+
|
95 |
+
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
96 |
+
#### Get the batch data
|
97 |
+
batch = queue.get()
|
98 |
+
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
99 |
+
|
100 |
+
|
101 |
+
if len(batch[0]) == 2: #(anchor, positive)
|
102 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
103 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
104 |
+
|
105 |
+
### Compute embeddings
|
106 |
+
embeddings_a = model(**text1.to(device))
|
107 |
+
embeddings_b = model(**text2.to(device))
|
108 |
+
|
109 |
+
### Gather all embedings
|
110 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
111 |
+
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
112 |
+
|
113 |
+
### Compute similarity scores 512 x 512
|
114 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
115 |
+
|
116 |
+
### Compute cross-entropy loss
|
117 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
118 |
+
|
119 |
+
## Symmetric loss as in CLIP
|
120 |
+
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
121 |
+
|
122 |
+
else: #(anchor, positive, negative)
|
123 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
124 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
125 |
+
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
126 |
+
|
127 |
+
embeddings_a = model(**text1.to(device))
|
128 |
+
embeddings_b1 = model(**text2.to(device))
|
129 |
+
embeddings_b2 = model(**text3.to(device))
|
130 |
+
|
131 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
132 |
+
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
133 |
+
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
134 |
+
|
135 |
+
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
136 |
+
|
137 |
+
### Compute similarity scores 512 x 1024
|
138 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
139 |
+
|
140 |
+
### Compute cross-entropy loss
|
141 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
142 |
+
|
143 |
+
## One-way loss
|
144 |
+
loss = cross_entropy_loss(scores, labels)
|
145 |
+
|
146 |
+
|
147 |
+
# Backward pass
|
148 |
+
optimizer.zero_grad()
|
149 |
+
loss.backward()
|
150 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
151 |
+
|
152 |
+
xm.optimizer_step(optimizer, barrier=True)
|
153 |
+
lr_scheduler.step()
|
154 |
+
|
155 |
+
|
156 |
+
#Save model
|
157 |
+
if (global_step+1) % args.save_steps == 0:
|
158 |
+
output_path = os.path.join(args.output, str(global_step+1))
|
159 |
+
xm.master_print("save model: "+output_path)
|
160 |
+
model.save_pretrained(output_path)
|
161 |
+
|
162 |
+
|
163 |
+
output_path = os.path.join(args.output, "final")
|
164 |
+
xm.master_print("save model final: "+ output_path)
|
165 |
+
model.save_pretrained(output_path)
|
166 |
+
|
167 |
+
|
168 |
+
def produce_data(args, queue, filepaths, dataset_indices):
|
169 |
+
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
170 |
+
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
171 |
+
num_same_dataset = int(size_per_dataset / args.batch_size)
|
172 |
+
print("producer", "global_batch_size", global_batch_size)
|
173 |
+
print("producer", "size_per_dataset", size_per_dataset)
|
174 |
+
print("producer", "num_same_dataset", num_same_dataset)
|
175 |
+
|
176 |
+
datasets = []
|
177 |
+
for filepath in filepaths:
|
178 |
+
if "reddit_" in filepath: #Special dataset class for Reddit files
|
179 |
+
data_obj = RedditDataset(filepath)
|
180 |
+
else:
|
181 |
+
data_obj = Dataset(filepath)
|
182 |
+
datasets.append(iter(data_obj))
|
183 |
+
|
184 |
+
# Store if dataset is in a 2 col or 3 col format
|
185 |
+
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
186 |
+
|
187 |
+
while True:
|
188 |
+
texts_in_batch = set()
|
189 |
+
batch_format = None #2 vs 3 col format for this batch
|
190 |
+
|
191 |
+
#Add data from several sub datasets
|
192 |
+
for _ in range(args.datasets_per_batch):
|
193 |
+
valid_dataset = False #Check that datasets have the same 2/3 col format
|
194 |
+
while not valid_dataset:
|
195 |
+
data_idx = random.choice(dataset_indices)
|
196 |
+
if batch_format is None:
|
197 |
+
batch_format = num_cols[data_idx]
|
198 |
+
valid_dataset = True
|
199 |
+
else: #Check that this dataset has the same format
|
200 |
+
valid_dataset = (batch_format == num_cols[data_idx])
|
201 |
+
|
202 |
+
#Get data from this dataset
|
203 |
+
dataset = datasets[data_idx]
|
204 |
+
for _ in range(num_same_dataset):
|
205 |
+
for _ in range(args.nprocs):
|
206 |
+
batch_device = [] #A batch for one device
|
207 |
+
while len(batch_device) < args.batch_size:
|
208 |
+
sample = next(dataset)
|
209 |
+
in_batch = False
|
210 |
+
for text in sample:
|
211 |
+
if text in texts_in_batch:
|
212 |
+
in_batch = True
|
213 |
+
break
|
214 |
+
|
215 |
+
if not in_batch:
|
216 |
+
for text in sample:
|
217 |
+
texts_in_batch.add(text)
|
218 |
+
batch_device.append(sample)
|
219 |
+
|
220 |
+
queue.put(batch_device)
|
221 |
+
|
222 |
+
|
223 |
+
class RedditDataset:
|
224 |
+
"""
|
225 |
+
A class that handles the reddit data files
|
226 |
+
"""
|
227 |
+
def __init__(self, filepath):
|
228 |
+
self.filepath = filepath
|
229 |
+
|
230 |
+
def __iter__(self):
|
231 |
+
while True:
|
232 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
233 |
+
for line in fIn:
|
234 |
+
data = json.loads(line)
|
235 |
+
|
236 |
+
if "response" in data and "context" in data:
|
237 |
+
yield [data["response"], data["context"]]
|
238 |
+
|
239 |
+
class Dataset:
|
240 |
+
"""
|
241 |
+
A class that handles one dataset
|
242 |
+
"""
|
243 |
+
def __init__(self, filepath):
|
244 |
+
self.filepath = filepath
|
245 |
+
|
246 |
+
def __iter__(self):
|
247 |
+
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
248 |
+
dataset = []
|
249 |
+
data_format = None
|
250 |
+
|
251 |
+
while dataset is None or len(dataset) == 0:
|
252 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
253 |
+
for line in fIn:
|
254 |
+
data = json.loads(line)
|
255 |
+
if isinstance(data, dict):
|
256 |
+
data = data['texts']
|
257 |
+
|
258 |
+
if data_format is None:
|
259 |
+
data_format = len(data)
|
260 |
+
|
261 |
+
#Ensure that all entries are of the same 2/3 col format
|
262 |
+
assert len(data) == data_format
|
263 |
+
|
264 |
+
if dataset is not None:
|
265 |
+
dataset.append(data)
|
266 |
+
if len(dataset) >= max_dataset_size:
|
267 |
+
dataset = None
|
268 |
+
|
269 |
+
yield data
|
270 |
+
|
271 |
+
# Data loaded. Now stream to the queue
|
272 |
+
# Shuffle for each epoch
|
273 |
+
while True:
|
274 |
+
random.shuffle(dataset)
|
275 |
+
for data in dataset:
|
276 |
+
yield data
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
parser = argparse.ArgumentParser()
|
282 |
+
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
283 |
+
parser.add_argument('--steps', type=int, default=2000)
|
284 |
+
parser.add_argument('--save_steps', type=int, default=10000)
|
285 |
+
parser.add_argument('--batch_size', type=int, default=64)
|
286 |
+
parser.add_argument('--max_length', type=int, default=128)
|
287 |
+
parser.add_argument('--nprocs', type=int, default=8)
|
288 |
+
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
289 |
+
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
290 |
+
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
291 |
+
parser.add_argument('data_config', help="A data_config.json file")
|
292 |
+
parser.add_argument('output')
|
293 |
+
args = parser.parse_args()
|
294 |
+
|
295 |
+
# Ensure global batch size is divisble by data_sample_size
|
296 |
+
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
297 |
+
|
298 |
+
logging.info("Output: "+args.output)
|
299 |
+
if os.path.exists(args.output):
|
300 |
+
print("Output folder already exists.")
|
301 |
+
input("Continue?")
|
302 |
+
|
303 |
+
# Write train script to output path
|
304 |
+
os.makedirs(args.output, exist_ok=True)
|
305 |
+
|
306 |
+
data_config_path = os.path.join(args.output, 'data_config.json')
|
307 |
+
copyfile(args.data_config, data_config_path)
|
308 |
+
|
309 |
+
train_script_path = os.path.join(args.output, 'train_script.py')
|
310 |
+
copyfile(__file__, train_script_path)
|
311 |
+
with open(train_script_path, 'a') as fOut:
|
312 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
#Load data config
|
317 |
+
with open(args.data_config) as fIn:
|
318 |
+
data_config = json.load(fIn)
|
319 |
+
|
320 |
+
queue = mp.Queue(maxsize=100*args.nprocs)
|
321 |
+
|
322 |
+
filepaths = []
|
323 |
+
dataset_indices = []
|
324 |
+
for idx, data in enumerate(data_config):
|
325 |
+
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
326 |
+
dataset_indices.extend([idx]*data['weight'])
|
327 |
+
|
328 |
+
# Start producer
|
329 |
+
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
330 |
+
p.start()
|
331 |
+
|
332 |
+
# Run training
|
333 |
+
print("Start processes:", args.nprocs)
|
334 |
+
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
335 |
+
print("Training done")
|
336 |
+
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
337 |
+
print("With 'pkill python' you can kill all remaining python processes")
|
338 |
+
p.kill()
|
339 |
+
exit()
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
# Script was called via:
|
344 |
+
#python train_many_data_files_v2.py --steps 1000000 --batch_size 64 --model output/all_datasets_v3_mpnet-base/120000 train_data_configs/all_datasets_v3.json output/all_datasets_v3_mpnet-base_cnt_120k
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|