nreimers commited on
Commit
f0b075e
1 Parent(s): 86ea3e1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - transformers
9
+ - transformers
10
+ - transformers
11
+ ---
12
+
13
+ # sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
14
+
15
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
+
17
+
18
+
19
+ ## Usage (Sentence-Transformers)
20
+
21
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
22
+
23
+ ```
24
+ pip install -U sentence-transformers
25
+ ```
26
+
27
+ Then you can use the model like this:
28
+
29
+ ```python
30
+ from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Each sentence is converted"]
32
+
33
+ model = SentenceTransformer('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base')
34
+ embeddings = model.encode(sentences)
35
+ print(embeddings)
36
+ ```
37
+
38
+
39
+
40
+ ## Usage (HuggingFace Transformers)
41
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModel
45
+ import torch
46
+
47
+
48
+ def cls_pooling(model_output, attention_mask):
49
+ return model_output[0][:,0]
50
+
51
+
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
+
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base')
57
+ model = AutoModel.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base')
58
+
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
+
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
+
66
+ # Perform pooling. In this case, max pooling.
67
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
68
+
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
71
+ ```
72
+
73
+
74
+
75
+ ## Evaluation Results
76
+
77
+
78
+
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base)
80
+
81
+
82
+
83
+ ## Full Model Architecture
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
88
+ )
89
+ ```
90
+
91
+ ## Citing & Authors
92
+
93
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
94
+
95
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
96
+ ```bibtex
97
+ @inproceedings{reimers-2019-sentence-bert,
98
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
99
+ author = "Reimers, Nils and Gurevych, Iryna",
100
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
101
+ month = "11",
102
+ year = "2019",
103
+ publisher = "Association for Computational Linguistics",
104
+ url = "http://arxiv.org/abs/1908.10084",
105
+ }
106
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/facebook-dpr-ctx_encoder-single-nq-base/0_Transformer",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "projection_dim": 0,
21
+ "transformers_version": "4.7.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6695c47b1a81d7c49e1ae8b4a822755e09a76cb4c3db6e853183c270429e3720
3
+ size 438007537
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 509,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "dpr-context-encoder/special_tokens_map.json", "full_tokenizer_file": null, "name_or_path": "old_models/facebook-dpr-ctx_encoder-single-nq-base/0_Transformer", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff