--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/gtr-t5-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model was specifically trained for the task of sematic search. This model was converted from the Tensorflow model [gtr-base-1](https://tfhub.dev/google/gtr/gtr-base/1) to PyTorch. When using this model, have a look at the publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899) The model uses only the encoder from a T5-base model. The weights are stored in FP16. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/sentence-transformers/gtr-t5-base') embeddings = model.encode(sentences) print(embeddings) ``` The model requires sentence-transformers version 2.2.0 or newer. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/gtr-t5-base) ## Citing & Authors If you find this model helpful, please cite the respective publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899)