File size: 13,804 Bytes
99c2d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
"""
Train script for a single file
Need to set the TPU address first:
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
"""
import torch.multiprocessing as mp
import threading
import time
import random
import sys
import argparse
import gzip
import json
import logging
import tqdm
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch
import torch_xla
import torch_xla.core
import torch_xla.core.functions
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.distributed.parallel_loader as pl
import os
from shutil import copyfile
from transformers import (
AdamW,
AutoModel,
AutoTokenizer,
get_linear_schedule_with_warmup,
set_seed,
)
class AutoModelForSentenceEmbedding(nn.Module):
def __init__(self, model_name, tokenizer, args):
super(AutoModelForSentenceEmbedding, self).__init__()
assert args.pooling in ['mean', 'cls']
self.model = AutoModel.from_pretrained(model_name)
self.normalize = not args.no_normalize
self.tokenizer = tokenizer
self.pooling = args.pooling
def forward(self, **kwargs):
model_output = self.model(**kwargs)
if self.pooling == 'mean':
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
elif self.pooling == 'cls':
embeddings = self.cls_pooling(model_output, kwargs['attention_mask'])
if self.normalize:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
return embeddings
def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def cls_pooling(self, model_output, attention_mask):
return model_output[0][:,0]
def save_pretrained(self, output_path):
if xm.is_master_ordinal():
self.tokenizer.save_pretrained(output_path)
self.model.config.save_pretrained(output_path)
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
def train_function(index, args, queue):
tokenizer = AutoTokenizer.from_pretrained(args.model)
model = AutoModelForSentenceEmbedding(args.model, tokenizer, args)
### Train Loop
device = xm.xla_device()
model = model.to(device)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=500,
num_training_steps=args.steps,
)
# Now we train the model
cross_entropy_loss = nn.CrossEntropyLoss()
max_grad_norm = 1
model.train()
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
#### Get the batch data
batch = queue.get()
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
if len(batch[0]) == 2: #(anchor, positive)
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length")
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")
### Compute embeddings
embeddings_a = model(**text1.to(device))
embeddings_b = model(**text2.to(device))
### Gather all embedings
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
### Compute similarity scores 512 x 512
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
### Compute cross-entropy loss
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
## Symmetric loss as in CLIP
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
else: #(anchor, positive, negative)
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length")
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")
embeddings_a = model(**text1.to(device))
embeddings_b1 = model(**text2.to(device))
embeddings_b2 = model(**text3.to(device))
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
### Compute similarity scores 512 x 1024
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
### Compute cross-entropy loss
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
## One-way loss
loss = cross_entropy_loss(scores, labels)
# Backward pass
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
xm.optimizer_step(optimizer, barrier=True)
lr_scheduler.step()
#Save model
if (global_step+1) % args.save_steps == 0:
output_path = os.path.join(args.output, str(global_step+1))
xm.master_print("save model: "+output_path)
model.save_pretrained(output_path)
output_path = os.path.join(args.output, "final")
xm.master_print("save model final: "+ output_path)
model.save_pretrained(output_path)
def produce_data(args, queue, filepaths, dataset_indices):
global_batch_size = args.batch_size*args.nprocs #Global batch size
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
num_same_dataset = int(size_per_dataset / args.batch_size)
print("producer", "global_batch_size", global_batch_size)
print("producer", "size_per_dataset", size_per_dataset)
print("producer", "num_same_dataset", num_same_dataset)
datasets = []
for filepath in filepaths:
if "reddit_" in filepath: #Special dataset class for Reddit files
data_obj = RedditDataset(filepath)
else:
data_obj = Dataset(filepath)
datasets.append(iter(data_obj))
# Store if dataset is in a 2 col or 3 col format
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
while True:
texts_in_batch = set()
batch_format = None #2 vs 3 col format for this batch
#Add data from several sub datasets
for _ in range(args.datasets_per_batch):
valid_dataset = False #Check that datasets have the same 2/3 col format
while not valid_dataset:
data_idx = random.choice(dataset_indices)
if batch_format is None:
batch_format = num_cols[data_idx]
valid_dataset = True
else: #Check that this dataset has the same format
valid_dataset = (batch_format == num_cols[data_idx])
#Get data from this dataset
dataset = datasets[data_idx]
for _ in range(num_same_dataset):
for _ in range(args.nprocs):
batch_device = [] #A batch for one device
while len(batch_device) < args.batch_size:
sample = next(dataset)
in_batch = False
for text in sample:
if text in texts_in_batch:
in_batch = True
break
if not in_batch:
for text in sample:
texts_in_batch.add(text)
batch_device.append(sample)
queue.put(batch_device)
class RedditDataset:
"""
A class that handles the reddit data files
"""
def __init__(self, filepath):
self.filepath = filepath
def __iter__(self):
while True:
with gzip.open(self.filepath, "rt") as fIn:
for line in fIn:
data = json.loads(line)
if "response" in data and "context" in data:
yield [data["response"], data["context"]]
class Dataset:
"""
A class that handles one dataset
"""
def __init__(self, filepath):
self.filepath = filepath
def __iter__(self):
max_dataset_size = 20*1000*1000 #Cache small datasets in memory
dataset = []
data_format = None
while dataset is None or len(dataset) == 0:
with gzip.open(self.filepath, "rt") as fIn:
for line in fIn:
data = json.loads(line)
if isinstance(data, dict):
data = data['texts']
if data_format is None:
data_format = len(data)
#Ensure that all entries are of the same 2/3 col format
assert len(data) == data_format
if dataset is not None:
dataset.append(data)
if len(dataset) >= max_dataset_size:
dataset = None
yield data
# Data loaded. Now stream to the queue
# Shuffle for each epoch
while True:
random.shuffle(dataset)
for data in dataset:
yield data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
parser.add_argument('--steps', type=int, default=2000)
parser.add_argument('--save_steps', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--max_length_a', type=int, default=128)
parser.add_argument('--max_length_b', type=int, default=128)
parser.add_argument('--nprocs', type=int, default=8)
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
parser.add_argument('--no_normalize', action="store_true", default=False, help="If set: Embeddings are not normalized")
parser.add_argument('--pooling', default='mean')
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
parser.add_argument('data_config', help="A data_config.json file")
parser.add_argument('output')
args = parser.parse_args()
# Ensure global batch size is divisble by data_sample_size
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
logging.info("Output: "+args.output)
if os.path.exists(args.output):
print("Output folder already exists.")
input("Continue?")
# Write train script to output path
os.makedirs(args.output, exist_ok=True)
data_config_path = os.path.join(args.output, 'data_config.json')
copyfile(args.data_config, data_config_path)
train_script_path = os.path.join(args.output, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
#Load data config
with open(args.data_config) as fIn:
data_config = json.load(fIn)
queue = mp.Queue(maxsize=100*args.nprocs)
filepaths = []
dataset_indices = []
for idx, data in enumerate(data_config):
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
dataset_indices.extend([idx]*data['weight'])
# Start producer
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
p.start()
# Run training
print("Start processes:", args.nprocs)
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
print("Training done")
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
print("With 'pkill python' you can kill all remaining python processes")
p.kill()
exit()
# Script was called via:
#python train_many_data_files_v2.py --steps 200000 --batch_size 64 --model distilbert-base-uncased --max_length_a 64 --max_length_b 250 --scale 1 --pooling cls --no_normalize train_data_configs/multi-qa_v1.json output/multi-qa_v1-distilbert-base-cls_dot |