nreimers commited on
Commit
349c015
1 Parent(s): 2aec043

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,11 +1,42 @@
1
- # Sentence Embeddings Models trained on Duplicate Questions
2
- This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [Quora Duplicate Questions dataset](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs). Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
 
 
 
 
 
 
3
 
4
- For more details, see: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)
5
 
6
- ## Usage (HuggingFace Models Repository)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- You can use the model directly from the model repository to compute sentence embeddings:
9
  ```python
10
  from transformers import AutoTokenizer, AutoModel
11
  import torch
@@ -15,55 +46,54 @@ import torch
15
  def mean_pooling(model_output, attention_mask):
16
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
17
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
18
- sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
19
- sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
20
- return sum_embeddings / sum_mask
21
 
22
 
 
 
23
 
24
- #Sentences we want sentence embeddings for
25
- sentences = ['This framework generates embeddings for each input sentence',
26
- 'Sentences are passed as a list of string.',
27
- 'The quick brown fox jumps over the lazy dog.']
28
 
29
- #Load AutoModel from huggingface model repository
30
- tokenizer = AutoTokenizer.from_pretrained("model_name")
31
- model = AutoModel.from_pretrained("model_name")
32
 
33
- #Tokenize sentences
34
- encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
35
-
36
- #Compute token embeddings
37
  with torch.no_grad():
38
  model_output = model(**encoded_input)
39
 
40
- #Perform pooling. In this case, mean pooling
41
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
42
- ```
43
-
44
- ## Usage (Sentence-Transformers)
45
- Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
46
- ```
47
- pip install -U sentence-transformers
48
- ```
49
-
50
- Then you can use the model like this:
51
- ```python
52
- from sentence_transformers import SentenceTransformer
53
- model = SentenceTransformer('model_name')
54
- sentences = ['This framework generates embeddings for each input sentence',
55
- 'Sentences are passed as a list of string.',
56
- 'The quick brown fox jumps over the lazy dog.']
57
- sentence_embeddings = model.encode(sentences)
58
 
59
  print("Sentence embeddings:")
60
  print(sentence_embeddings)
61
  ```
62
 
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ## Citing & Authors
 
 
 
65
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
66
- ```
67
  @inproceedings{reimers-2019-sentence-bert,
68
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
69
  author = "Reimers, Nils and Gurevych, Iryna",
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
 
10
+ # sentence-transformers/quora-distilbert-base
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('sentence-transformers/quora-distilbert-base')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
 
 
40
  ```python
41
  from transformers import AutoTokenizer, AutoModel
42
  import torch
 
46
  def mean_pooling(model_output, attention_mask):
47
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
 
 
50
 
51
 
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/quora-distilbert-base')
57
+ model = AutoModel.from_pretrained('sentence-transformers/quora-distilbert-base')
 
58
 
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
61
 
62
+ # Compute token embeddings
 
 
 
63
  with torch.no_grad():
64
  model_output = model(**encoded_input)
65
 
66
+ # Perform pooling. In this case, max pooling.
67
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  print("Sentence embeddings:")
70
  print(sentence_embeddings)
71
  ```
72
 
73
 
74
+
75
+ ## Evaluation Results
76
+
77
+
78
+
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/quora-distilbert-base)
80
+
81
+
82
+
83
+ ## Full Model Architecture
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
88
+ )
89
+ ```
90
+
91
  ## Citing & Authors
92
+
93
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
94
+
95
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
96
+ ```bibtex
97
  @inproceedings{reimers-2019-sentence-bert,
98
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
99
  author = "Reimers, Nils and Gurevych, Iryna",
config.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "activation": "gelu",
3
  "architectures": [
4
  "DistilBertModel"
@@ -17,5 +18,6 @@
17
  "seq_classif_dropout": 0.2,
18
  "sinusoidal_pos_embds": false,
19
  "tie_weights_": true,
 
20
  "vocab_size": 30522
21
  }
 
1
  {
2
+ "_name_or_path": "old_models/quora-distilbert-base/0_Transformer",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertModel"
 
18
  "seq_classif_dropout": 0.2,
19
  "sinusoidal_pos_embds": false,
20
  "tie_weights_": true,
21
+ "transformers_version": "4.7.0",
22
  "vocab_size": 30522
23
  }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68d315c1638882d9c6cd8901ed497a24de830506773274f60f477620002e113d
3
- size 265473819
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d249f8d48aa2bf254c4ac1672f030873eff02e67aaeb0b9e9bdedb79cd4468cd
3
+ size 265486777
sentence_bert_config.json CHANGED
@@ -1,3 +1,4 @@
1
  {
2
- "max_seq_length": 128
 
3
  }
 
1
  {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
  }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"do_lower_case": true, "model_max_length": 512, "special_tokens_map_file": "output/training_nli_distilbert-base-uncased-2020-07-22_10-20-15/0_Transformer/special_tokens_map.json", "full_tokenizer_file": null}
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "output/training_nli_distilbert-base-uncased-2020-07-22_10-20-15/0_Transformer/special_tokens_map.json", "full_tokenizer_file": null, "name_or_path": "old_models/quora-distilbert-base/0_Transformer", "do_basic_tokenize": true, "never_split": null}