|
import random |
|
import logging |
|
from datasets import load_dataset, Dataset, DatasetDict |
|
from sentence_transformers import ( |
|
SentenceTransformer, |
|
SentenceTransformerTrainer, |
|
SentenceTransformerTrainingArguments, |
|
SentenceTransformerModelCardData, |
|
) |
|
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss |
|
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers |
|
from sentence_transformers.evaluation import NanoBEIREvaluator |
|
from sentence_transformers.models.StaticEmbedding import StaticEmbedding |
|
|
|
from transformers import AutoTokenizer |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO |
|
) |
|
random.seed(12) |
|
|
|
|
|
def load_train_eval_datasets(): |
|
""" |
|
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk. |
|
|
|
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training. |
|
""" |
|
try: |
|
train_dataset = DatasetDict.load_from_disk("datasets/train_dataset") |
|
eval_dataset = DatasetDict.load_from_disk("datasets/eval_dataset") |
|
return train_dataset, eval_dataset |
|
except FileNotFoundError: |
|
print("Loading gooaq dataset...") |
|
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train") |
|
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12) |
|
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"] |
|
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"] |
|
print("Loaded gooaq dataset.") |
|
|
|
print("Loading msmarco dataset...") |
|
msmarco_dataset = load_dataset("sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1", "triplet", split="train") |
|
msmarco_dataset_dict = msmarco_dataset.train_test_split(test_size=10_000, seed=12) |
|
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"] |
|
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"] |
|
print("Loaded msmarco dataset.") |
|
|
|
print("Loading squad dataset...") |
|
squad_dataset = load_dataset("sentence-transformers/squad", split="train") |
|
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12) |
|
squad_train_dataset: Dataset = squad_dataset_dict["train"] |
|
squad_eval_dataset: Dataset = squad_dataset_dict["test"] |
|
print("Loaded squad dataset.") |
|
|
|
print("Loading s2orc dataset...") |
|
s2orc_dataset = load_dataset("sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]") |
|
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12) |
|
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"] |
|
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"] |
|
print("Loaded s2orc dataset.") |
|
|
|
print("Loading allnli dataset...") |
|
allnli_train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train") |
|
allnli_eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev") |
|
print("Loaded allnli dataset.") |
|
|
|
print("Loading paq dataset...") |
|
paq_dataset = load_dataset("sentence-transformers/paq", split="train") |
|
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12) |
|
paq_train_dataset: Dataset = paq_dataset_dict["train"] |
|
paq_eval_dataset: Dataset = paq_dataset_dict["test"] |
|
print("Loaded paq dataset.") |
|
|
|
print("Loading trivia_qa dataset...") |
|
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train") |
|
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12) |
|
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"] |
|
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"] |
|
print("Loaded trivia_qa dataset.") |
|
|
|
print("Loading msmarco_10m dataset...") |
|
msmarco_10m_dataset = load_dataset("bclavie/msmarco-10m-triplets", split="train") |
|
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(test_size=10_000, seed=12) |
|
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"] |
|
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"] |
|
print("Loaded msmarco_10m dataset.") |
|
|
|
print("Loading swim_ir dataset...") |
|
swim_ir_dataset = load_dataset("nthakur/swim-ir-monolingual", "en", split="train").select_columns(["query", "text"]) |
|
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(test_size=10_000, seed=12) |
|
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"] |
|
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"] |
|
print("Loaded swim_ir dataset.") |
|
|
|
|
|
print("Loading pubmedqa dataset...") |
|
pubmedqa_dataset = load_dataset("sentence-transformers/pubmedqa", "triplet-20", split="train") |
|
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(test_size=100, seed=12) |
|
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"] |
|
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"] |
|
print("Loaded pubmedqa dataset.") |
|
|
|
|
|
print("Loading miracl dataset...") |
|
miracl_dataset = load_dataset("sentence-transformers/miracl", "en-triplet-all", split="train") |
|
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12) |
|
miracl_train_dataset: Dataset = miracl_dataset_dict["train"] |
|
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"] |
|
print("Loaded miracl dataset.") |
|
|
|
|
|
print("Loading mldr dataset...") |
|
mldr_dataset = load_dataset("sentence-transformers/mldr", "en-triplet-all", split="train") |
|
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12) |
|
mldr_train_dataset: Dataset = mldr_dataset_dict["train"] |
|
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"] |
|
print("Loaded mldr dataset.") |
|
|
|
|
|
print("Loading mr_tydi dataset...") |
|
mr_tydi_dataset = load_dataset("sentence-transformers/mr-tydi", "en-triplet-all", split="train") |
|
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(test_size=10_000, seed=12) |
|
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"] |
|
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"] |
|
print("Loaded mr_tydi dataset.") |
|
|
|
train_dataset = DatasetDict({ |
|
"gooaq": gooaq_train_dataset, |
|
"msmarco": msmarco_train_dataset, |
|
"squad": squad_train_dataset, |
|
"s2orc": s2orc_train_dataset, |
|
"allnli": allnli_train_dataset, |
|
"paq": paq_train_dataset, |
|
"trivia_qa": trivia_qa_train_dataset, |
|
"msmarco_10m": msmarco_10m_train_dataset, |
|
"swim_ir": swim_ir_train_dataset, |
|
"pubmedqa": pubmedqa_train_dataset, |
|
"miracl": miracl_train_dataset, |
|
"mldr": mldr_train_dataset, |
|
"mr_tydi": mr_tydi_train_dataset, |
|
}) |
|
eval_dataset = DatasetDict({ |
|
"gooaq": gooaq_eval_dataset, |
|
"msmarco": msmarco_eval_dataset, |
|
"squad": squad_eval_dataset, |
|
"s2orc": s2orc_eval_dataset, |
|
"allnli": allnli_eval_dataset, |
|
"paq": paq_eval_dataset, |
|
"trivia_qa": trivia_qa_eval_dataset, |
|
"msmarco_10m": msmarco_10m_eval_dataset, |
|
"swim_ir": swim_ir_eval_dataset, |
|
"pubmedqa": pubmedqa_eval_dataset, |
|
"miracl": miracl_eval_dataset, |
|
"mldr": mldr_eval_dataset, |
|
"mr_tydi": mr_tydi_eval_dataset, |
|
}) |
|
|
|
train_dataset.save_to_disk("datasets/train_dataset") |
|
eval_dataset.save_to_disk("datasets/eval_dataset") |
|
|
|
|
|
|
|
quit() |
|
|
|
|
|
def main(): |
|
|
|
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("google-bert/bert-base-uncased"), embedding_dim=1024) |
|
model = SentenceTransformer( |
|
modules=[static_embedding], |
|
model_card_data=SentenceTransformerModelCardData( |
|
language="en", |
|
license="apache-2.0", |
|
model_name="Static Embeddings with BERT uncased tokenizer finetuned on various datasets", |
|
), |
|
) |
|
|
|
|
|
train_dataset, eval_dataset = load_train_eval_datasets() |
|
print(train_dataset) |
|
|
|
|
|
loss = MultipleNegativesRankingLoss(model) |
|
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024]) |
|
|
|
|
|
run_name = "static-retrieval-mrl-en-v1" |
|
args = SentenceTransformerTrainingArguments( |
|
|
|
output_dir=f"models/{run_name}", |
|
|
|
num_train_epochs=1, |
|
per_device_train_batch_size=2048, |
|
per_device_eval_batch_size=2048, |
|
learning_rate=2e-1, |
|
warmup_ratio=0.1, |
|
fp16=False, |
|
bf16=True, |
|
batch_sampler=BatchSamplers.NO_DUPLICATES, |
|
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL, |
|
|
|
eval_strategy="steps", |
|
eval_steps=250, |
|
save_strategy="steps", |
|
save_steps=250, |
|
save_total_limit=2, |
|
logging_steps=250, |
|
logging_first_step=True, |
|
run_name=run_name, |
|
) |
|
|
|
|
|
evaluator = NanoBEIREvaluator() |
|
evaluator(model) |
|
|
|
|
|
trainer = SentenceTransformerTrainer( |
|
model=model, |
|
args=args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
loss=loss, |
|
evaluator=evaluator, |
|
) |
|
trainer.train() |
|
|
|
|
|
evaluator(model) |
|
|
|
|
|
model.save_pretrained(f"models/{run_name}/final") |
|
|
|
|
|
model.push_to_hub(run_name, private=True) |
|
|
|
if __name__ == "__main__": |
|
main() |