nreimers commited on
Commit
08ec750
·
1 Parent(s): c008614
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sentence Embeddings Models trained on Paraphrases
2
+ This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
3
+
4
+ This model is multilingual version, it was trained on parallel data for 50+ languages.
5
+
6
+ For more details, see: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)
7
+
8
+ ## Usage (HuggingFace Models Repository)
9
+
10
+ You can use the model directly from the model repository to compute sentence embeddings:
11
+ ```python
12
+ from transformers import AutoTokenizer, AutoModel
13
+ import torch
14
+
15
+
16
+ #Mean Pooling - Take attention mask into account for correct averaging
17
+ def mean_pooling(model_output, attention_mask):
18
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
19
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
20
+ sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
21
+ sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
22
+ return sum_embeddings / sum_mask
23
+
24
+
25
+
26
+ #Sentences we want sentence embeddings for
27
+ sentences = ['This framework generates embeddings for each input sentence',
28
+ 'Sentences are passed as a list of string.',
29
+ 'The quick brown fox jumps over the lazy dog.']
30
+
31
+ #Load AutoModel from huggingface model repository
32
+ tokenizer = AutoTokenizer.from_pretrained("model_name")
33
+ model = AutoModel.from_pretrained("model_name")
34
+
35
+ #Tokenize sentences
36
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
37
+
38
+ #Compute token embeddings
39
+ with torch.no_grad():
40
+ model_output = model(**encoded_input)
41
+
42
+ #Perform pooling. In this case, mean pooling
43
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
44
+ ```
45
+
46
+ ## Usage (Sentence-Transformers)
47
+ Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
48
+ ```
49
+ pip install -U sentence-transformers
50
+ ```
51
+
52
+ Then you can use the model like this:
53
+ ```python
54
+ from sentence_transformers import SentenceTransformer
55
+ model = SentenceTransformer('model_name')
56
+ sentences = ['This framework generates embeddings for each input sentence',
57
+ 'Sentences are passed as a list of string.',
58
+ 'The quick brown fox jumps over the lazy dog.']
59
+ sentence_embeddings = model.encode(sentences)
60
+
61
+ print("Sentence embeddings:")
62
+ print(sentence_embeddings)
63
+ ```
64
+
65
+
66
+ ## Citing & Authors
67
+ If you find this model helpful, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813):
68
+ ```
69
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
70
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
71
+ author = "Reimers, Nils and Gurevych, Iryna",
72
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
73
+ month = "11",
74
+ year = "2020",
75
+ publisher = "Association for Computational Linguistics",
76
+ url = "https://arxiv.org/abs/2004.09813",
77
+ }
78
+ ```
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "type_vocab_size": 1,
22
+ "vocab_size": 250002
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48315809d75adfbf8e9922ee0cdaaae26b4f6680ba8595d7ae50d67de848c830
3
+ size 1112256686
sentence_bert_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "max_seq_length": 128
3
+ }
sentencepiece.bpe.model ADDED
Binary file (5.07 MB). View file
 
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_max_length": 512, "special_tokens_map_file": "output/xlm-r-nli-stsb-40langs/0_Transformer/special_tokens_map.json", "full_tokenizer_file": null}