--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 --- # use-cmlm-multilingual This is a pytorch version of the [universal-sentence-encoder-cmlm/multilingual-base-br](https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-base-br/1) model. It can be used to map 109 languages to a shared vector space. As the model is based [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), it perform quite comparable on downstream tasks. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/use-cmlm-multilingual') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/LaBSE) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors Have a look at [universal-sentence-encoder-cmlm/multilingual-base-br](https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-base-br/1) for the respective publication that describes this model.