--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distil_bert_own_txt_clf_model results: [] --- # distil_bert_own_txt_clf_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0454 - Accuracy: 0.8167 - F1: 0.8125 - Precision: 0.8152 - Recall: 0.8127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3554 | 3.33 | 50 | 1.1341 | 0.5333 | 0.3913 | 0.5676 | 0.4930 | | 1.0538 | 6.67 | 100 | 1.1938 | 0.5833 | 0.5168 | 0.5381 | 0.5736 | | 0.3226 | 10.0 | 150 | 1.1243 | 0.6833 | 0.6412 | 0.7731 | 0.6614 | | 0.0674 | 13.33 | 200 | 0.8542 | 0.8417 | 0.8317 | 0.8442 | 0.8405 | | 0.0022 | 16.67 | 250 | 0.7832 | 0.8333 | 0.8252 | 0.8323 | 0.8277 | | 0.001 | 20.0 | 300 | 0.8204 | 0.8333 | 0.8265 | 0.8312 | 0.8307 | | 0.0005 | 23.33 | 350 | 0.8259 | 0.8583 | 0.8537 | 0.8534 | 0.8589 | | 0.0005 | 26.67 | 400 | 0.8121 | 0.825 | 0.8165 | 0.8230 | 0.8134 | | 0.0004 | 30.0 | 450 | 0.8673 | 0.8583 | 0.8537 | 0.8534 | 0.8589 | | 0.0003 | 33.33 | 500 | 0.8052 | 0.8583 | 0.8543 | 0.8561 | 0.8538 | | 0.0003 | 36.67 | 550 | 0.8324 | 0.8417 | 0.8363 | 0.8392 | 0.8372 | | 0.0003 | 40.0 | 600 | 0.8536 | 0.85 | 0.8445 | 0.8450 | 0.8480 | | 0.0003 | 43.33 | 650 | 0.8632 | 0.85 | 0.8445 | 0.8450 | 0.8480 | | 0.0003 | 46.67 | 700 | 0.8690 | 0.85 | 0.8445 | 0.8450 | 0.8480 | | 0.0003 | 50.0 | 750 | 0.8715 | 0.85 | 0.8445 | 0.8450 | 0.8480 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2