Upload 4 files
Browse files- XGBmodel.pkl +3 -0
- app.py +40 -0
- prediction.py +88 -0
- requirements.txt +5 -0
XGBmodel.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5616e5db162a0206f07f7057de10327a04780b3cdaeb548fd003791459853f57
|
3 |
+
size 309844
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# Import functions from eda.py and predict.py
|
4 |
+
from prediction import make_prediction
|
5 |
+
|
6 |
+
def main():
|
7 |
+
st.sidebar.title("Navigation")
|
8 |
+
selection = st.sidebar.radio("Select", ["Home", "EDA", "Prediction"])
|
9 |
+
|
10 |
+
if selection == "Home":
|
11 |
+
st.title("Welcome to our Laptop Price Predictor!")
|
12 |
+
st.subheader("",divider = 'gray')
|
13 |
+
st.write(
|
14 |
+
"This application is build so you don't have to do too much time on researching laptop prices. "
|
15 |
+
"Just tell me the specs you want and we'll tell you the price estimation!"
|
16 |
+
)
|
17 |
+
|
18 |
+
st.subheader("Prediction Model")
|
19 |
+
st.write(
|
20 |
+
"The Prediction section allows you to input your dream laptop specs. "
|
21 |
+
"By entering details about the laptop, we will give you a price estimation!"
|
22 |
+
)
|
23 |
+
st.markdown(
|
24 |
+
"""
|
25 |
+
<style>
|
26 |
+
.highlight {
|
27 |
+
color: #FF5733;
|
28 |
+
font-weight: bold;
|
29 |
+
}
|
30 |
+
</style>
|
31 |
+
""",
|
32 |
+
unsafe_allow_html=True
|
33 |
+
)
|
34 |
+
st.markdown('<p class="highlight">Make informed decisions to enhance your hotel management!</p>', unsafe_allow_html=True)
|
35 |
+
|
36 |
+
elif selection == "Prediction":
|
37 |
+
make_prediction() # Call prediction function
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
main()
|
prediction.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle # or import pickle if that's what you used to save your model
|
4 |
+
|
5 |
+
# Load your trained model
|
6 |
+
with open('XGBmodel.pkl', 'rb') as file_1:
|
7 |
+
XGBmodel = pickle.load(file_1)
|
8 |
+
|
9 |
+
# Set the title of the app
|
10 |
+
def make_prediction():
|
11 |
+
st.title('Laptop Price Prediction')
|
12 |
+
st.write("MLModel Built by MSABP")
|
13 |
+
st.header('',divider='gray')
|
14 |
+
|
15 |
+
# Create a form for inputting laptop specifications
|
16 |
+
with st.form(key='laptop_spec_form'):
|
17 |
+
# Input fields
|
18 |
+
company = st.text_input("Company")
|
19 |
+
product = st.text_input("Product")
|
20 |
+
laptop_type = st.selectbox("Type", ["Notebook", "Gaming", "Ultrabook", "2-in-1", "Others"])
|
21 |
+
inches = st.number_input("Inches", min_value=0, step=1)
|
22 |
+
ram = st.number_input("RAM (GB)", min_value=0, step=2)
|
23 |
+
os = st.text_input("Operating System")
|
24 |
+
weight = st.number_input("Weight (kg)", min_value=0.0, step=0.1)
|
25 |
+
screen = st.selectbox("Screen Resolution", ["Full HD", "4K", "HD", "Others"])
|
26 |
+
width = st.number_input("Screen Width (px)", min_value=0, step=120)
|
27 |
+
height = st.number_input("Screen Height (px)", min_value=0, step=120)
|
28 |
+
touchscreen = st.selectbox("Touchscreen", ["Yes", "No"])
|
29 |
+
ips = st.selectbox("IPS Display", ["Yes", "No"])
|
30 |
+
retina = st.selectbox("Retina Display", ["Yes", "No"])
|
31 |
+
cpu_company = st.text_input("CPU Company")
|
32 |
+
cpu_freq = st.number_input("CPU Frequency (GHz)", min_value=0.0, step=0.1)
|
33 |
+
cpu_model = st.text_input("CPU Model")
|
34 |
+
primary_storage = st.number_input("Primary Storage (GB)", min_value=0, step=64)
|
35 |
+
secondary_storage = st.number_input("Secondary Storage (GB)", min_value=0, step=64)
|
36 |
+
primary_storage_type = st.selectbox("Primary Storage Type", ["SSD", "HDD", "Others"])
|
37 |
+
secondary_storage_type = st.selectbox("Secondary Storage Type", ["No", "SSD", "HDD", "Others"])
|
38 |
+
gpu_company = st.text_input("GPU Company")
|
39 |
+
gpu_model = st.text_input("GPU Model")
|
40 |
+
|
41 |
+
# Submit button
|
42 |
+
submit_button = st.form_submit_button(label='Submit')
|
43 |
+
|
44 |
+
if submit_button:
|
45 |
+
# Create a dictionary from the input data
|
46 |
+
laptop_data = {
|
47 |
+
"Company": company,
|
48 |
+
"Product": product,
|
49 |
+
"Type": laptop_type,
|
50 |
+
"Inches": inches,
|
51 |
+
"Ram": ram,
|
52 |
+
"OS": os,
|
53 |
+
"Weight": weight,
|
54 |
+
"Screen": screen,
|
55 |
+
"Width": width,
|
56 |
+
"Height": height,
|
57 |
+
"Touchscreen": touchscreen,
|
58 |
+
"IPS": ips,
|
59 |
+
"Retina": retina,
|
60 |
+
"CPU_company": cpu_company,
|
61 |
+
"CPU_freq": cpu_freq,
|
62 |
+
"CPU_model": cpu_model,
|
63 |
+
"PrimaryStorage": primary_storage,
|
64 |
+
"SecondaryStorage": secondary_storage,
|
65 |
+
"PrimaryStorageType": primary_storage_type,
|
66 |
+
"SecondaryStorageType": secondary_storage_type,
|
67 |
+
"GPU_company": gpu_company,
|
68 |
+
"GPU_model": gpu_model
|
69 |
+
}
|
70 |
+
|
71 |
+
# Convert the input data to a DataFrame for prediction
|
72 |
+
input_df = pd.DataFrame([laptop_data])
|
73 |
+
|
74 |
+
st.subheader('User Input')
|
75 |
+
st.write("""This is a view of the data you have entered.
|
76 |
+
""")
|
77 |
+
st.write(input_df)
|
78 |
+
|
79 |
+
# Make the prediction
|
80 |
+
predicted_price = XGBmodel.predict(input_df)
|
81 |
+
|
82 |
+
# Display the prediction message
|
83 |
+
st.write(f'Based on specs you wanted, the price estimation is: {predicted_price[0]:,.2f}')
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
make_prediction()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.32.0
|
2 |
+
scikit-learn==1.5.2
|
3 |
+
pandas==2.2.3
|
4 |
+
seaborn==0.13.2
|
5 |
+
matplotlib==3.9.2
|