UIT-NO-PRExlnet-base-cased-finetuned

This model is a fine-tuned version of xlnet/xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6397
  • F1: 0.7187
  • Roc Auc: 0.7856
  • Accuracy: 0.4531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5578 1.0 139 0.5043 0.3149 0.5892 0.2022
0.4414 2.0 278 0.4142 0.6034 0.7089 0.3827
0.3813 3.0 417 0.3941 0.6657 0.7419 0.4061
0.2291 4.0 556 0.4109 0.6806 0.7463 0.4260
0.23 5.0 695 0.4438 0.6914 0.7605 0.4386
0.15 6.0 834 0.4506 0.7001 0.7664 0.4513
0.1324 7.0 973 0.4842 0.6910 0.7646 0.4603
0.0803 8.0 1112 0.5092 0.7164 0.7915 0.4513
0.0772 9.0 1251 0.5448 0.7000 0.7734 0.4404
0.0459 10.0 1390 0.5791 0.6958 0.7693 0.4332
0.0308 11.0 1529 0.5954 0.7102 0.7836 0.4386
0.0343 12.0 1668 0.6288 0.7030 0.7780 0.4350
0.0254 13.0 1807 0.6397 0.7187 0.7856 0.4531
0.0269 14.0 1946 0.6693 0.6932 0.7705 0.4368
0.0144 15.0 2085 0.6778 0.6949 0.7711 0.4386
0.0104 16.0 2224 0.7106 0.6943 0.7684 0.4368
0.006 17.0 2363 0.7217 0.7053 0.7749 0.4422
0.0109 18.0 2502 0.7313 0.7124 0.7826 0.4368
0.0063 19.0 2641 0.7416 0.7116 0.7796 0.4314
0.0043 20.0 2780 0.7470 0.7124 0.7795 0.4332
0.0031 21.0 2919 0.7647 0.7012 0.7710 0.4296
0.0041 22.0 3058 0.7516 0.7019 0.7722 0.4350
0.0028 23.0 3197 0.7591 0.7035 0.7721 0.4386
0.0027 24.0 3336 0.7587 0.7052 0.7748 0.4386
0.0028 25.0 3475 0.7644 0.7099 0.7770 0.4422
0.0027 26.0 3614 0.7656 0.7081 0.7758 0.4422
0.0033 27.0 3753 0.7629 0.7097 0.7764 0.4477
0.0026 28.0 3892 0.7622 0.7082 0.7758 0.4458
0.0025 29.0 4031 0.7626 0.7082 0.7758 0.4458
0.0023 30.0 4170 0.7627 0.7082 0.7758 0.4458

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
117M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sercetexam9/UIT-NO-PRExlnet-base-cased-finetuned

Finetuned
(73)
this model