seregadgl commited on
Commit
82b5d02
1 Parent(s): 38acc74

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:4532
24
+ - loss:CoSENTLoss
25
+ widget:
26
+ - source_sentence: гантели грифы штанги гири
27
+ sentences:
28
+ - гири
29
+ - коммутатор poe web настраиваемый utp3526ts-psb
30
+ - игровой монитор lg xg2705
31
+ - source_sentence: vt vt9602
32
+ sentences:
33
+ - подгрифок для скрипки 1 4 wittner ultra 918141
34
+ - электросамокат white siberia nerpa pro 3600w 2023 elka зеленый
35
+ - компьютер pc itmultra 2 v 2
36
+ - source_sentence: фен dyson supersonic hd08 replika
37
+ sentences:
38
+ - стабилизатор smooth-x combo белый
39
+ - dyson supersonic hd08 replika
40
+ - ip-dal30ir0280p ver2
41
+ - source_sentence: aresa ar-4205
42
+ sentences:
43
+ - холодильник olto rf-140 c черный
44
+ - aresa ar-3905
45
+ - champion g200vk-1
46
+ - source_sentence: букеты шаров сеты для детей
47
+ sentences:
48
+ - букеты шаров сеты для него
49
+ - дрипка geekvape loop rda
50
+ - труба гладкая жесткая 16 мм 3 м
51
+ model-index:
52
+ - name: SentenceTransformer based on BAAI/bge-m3
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.9092748477762634
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8959000349666695
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.9103703525656046
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8944672696951159
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.9102936678180418
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8945285994969848
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.8951660474126123
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8872903553527511
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.9103703525656046
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8959000349666695
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on BAAI/bge-m3
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision babcf60cae0a1f438d7ade582983d4ba462303c2 -->
102
+ - **Maximum Sequence Length:** 8192 tokens
103
+ - **Output Dimensionality:** 1024 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ )
122
+ ```
123
+
124
+ ## Usage
125
+
126
+ ### Direct Usage (Sentence Transformers)
127
+
128
+ First install the Sentence Transformers library:
129
+
130
+ ```bash
131
+ pip install -U sentence-transformers
132
+ ```
133
+
134
+ Then you can load this model and run inference.
135
+ ```python
136
+ from sentence_transformers import SentenceTransformer
137
+
138
+ # Download from the 🤗 Hub
139
+ model = SentenceTransformer("seregadgl101/test_bge_10ep")
140
+ # Run inference
141
+ sentences = [
142
+ 'букеты шаров сеты для детей',
143
+ 'букеты шаров сеты для него',
144
+ 'дрипка geekvape loop rda',
145
+ ]
146
+ embeddings = model.encode(sentences)
147
+ print(embeddings.shape)
148
+ # [3, 1024]
149
+
150
+ # Get the similarity scores for the embeddings
151
+ similarities = model.similarity(embeddings, embeddings)
152
+ print(similarities.shape)
153
+ # [3, 3]
154
+ ```
155
+
156
+ <!--
157
+ ### Direct Usage (Transformers)
158
+
159
+ <details><summary>Click to see the direct usage in Transformers</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Downstream Usage (Sentence Transformers)
166
+
167
+ You can finetune this model on your own dataset.
168
+
169
+ <details><summary>Click to expand</summary>
170
+
171
+ </details>
172
+ -->
173
+
174
+ <!--
175
+ ### Out-of-Scope Use
176
+
177
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
178
+ -->
179
+
180
+ ## Evaluation
181
+
182
+ ### Metrics
183
+
184
+ #### Semantic Similarity
185
+ * Dataset: `sts-dev`
186
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
187
+
188
+ | Metric | Value |
189
+ |:--------------------|:-----------|
190
+ | pearson_cosine | 0.9093 |
191
+ | **spearman_cosine** | **0.8959** |
192
+ | pearson_manhattan | 0.9104 |
193
+ | spearman_manhattan | 0.8945 |
194
+ | pearson_euclidean | 0.9103 |
195
+ | spearman_euclidean | 0.8945 |
196
+ | pearson_dot | 0.8952 |
197
+ | spearman_dot | 0.8873 |
198
+ | pearson_max | 0.9104 |
199
+ | spearman_max | 0.8959 |
200
+
201
+ <!--
202
+ ## Bias, Risks and Limitations
203
+
204
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
205
+ -->
206
+
207
+ <!--
208
+ ### Recommendations
209
+
210
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
211
+ -->
212
+
213
+ ## Training Details
214
+
215
+ ### Training Dataset
216
+
217
+ #### Unnamed Dataset
218
+
219
+
220
+ * Size: 4,532 training samples
221
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | sentence1 | sentence2 | score |
224
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
225
+ | type | string | string | float |
226
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.45 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.09 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.6</li><li>max: 1.0</li></ul> |
227
+ * Samples:
228
+ | sentence1 | sentence2 | score |
229
+ |:-------------------------------------------------------------|:-------------------------------------------------------------|:-----------------|
230
+ | <code>батут evo jump internal 12ft</code> | <code>батут evo jump internal 12ft</code> | <code>1.0</code> |
231
+ | <code>наручные часы orient casual</code> | <code>наручные часы orient</code> | <code>1.0</code> |
232
+ | <code>электрический духовой шкаф weissgauff eov 19 mw</code> | <code>электрический духовой шкаф weissgauff eov 19 mx</code> | <code>0.4</code> |
233
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
234
+ ```json
235
+ {
236
+ "scale": 20.0,
237
+ "similarity_fct": "pairwise_cos_sim"
238
+ }
239
+ ```
240
+
241
+ ### Evaluation Dataset
242
+
243
+ #### Unnamed Dataset
244
+
245
+
246
+ * Size: 504 evaluation samples
247
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence1 | sentence2 | score |
250
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
251
+ | type | string | string | float |
252
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.93 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.1 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.59</li><li>max: 1.0</li></ul> |
253
+ * Samples:
254
+ | sentence1 | sentence2 | score |
255
+ |:------------------------------------------------------------------------------|:--------------------------------------------------------|:-----------------|
256
+ | <code>потолочный светильник yeelight smart led ceiling light c2001s500</code> | <code>yeelight smart led ceiling light c2001s500</code> | <code>1.0</code> |
257
+ | <code>канцелярские принадлежности</code> | <code>канцелярские принадлежности разные</code> | <code>0.4</code> |
258
+ | <code>usb-магнитола acv avs-1718g</code> | <code>автомагнитола acv avs-1718g</code> | <code>1.0</code> |
259
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
260
+ ```json
261
+ {
262
+ "scale": 20.0,
263
+ "similarity_fct": "pairwise_cos_sim"
264
+ }
265
+ ```
266
+
267
+ ### Training Hyperparameters
268
+ #### Non-Default Hyperparameters
269
+
270
+ - `eval_strategy`: steps
271
+ - `gradient_accumulation_steps`: 16
272
+ - `learning_rate`: 2e-05
273
+ - `num_train_epochs`: 10
274
+ - `lr_scheduler_type`: cosine
275
+ - `warmup_ratio`: 0.1
276
+ - `save_only_model`: True
277
+ - `fp16`: True
278
+ - `load_best_model_at_end`: True
279
+ - `batch_sampler`: no_duplicates
280
+
281
+ #### All Hyperparameters
282
+ <details><summary>Click to expand</summary>
283
+
284
+ - `overwrite_output_dir`: False
285
+ - `do_predict`: False
286
+ - `eval_strategy`: steps
287
+ - `prediction_loss_only`: True
288
+ - `per_device_train_batch_size`: 8
289
+ - `per_device_eval_batch_size`: 8
290
+ - `per_gpu_train_batch_size`: None
291
+ - `per_gpu_eval_batch_size`: None
292
+ - `gradient_accumulation_steps`: 16
293
+ - `eval_accumulation_steps`: None
294
+ - `learning_rate`: 2e-05
295
+ - `weight_decay`: 0.0
296
+ - `adam_beta1`: 0.9
297
+ - `adam_beta2`: 0.999
298
+ - `adam_epsilon`: 1e-08
299
+ - `max_grad_norm`: 1.0
300
+ - `num_train_epochs`: 10
301
+ - `max_steps`: -1
302
+ - `lr_scheduler_type`: cosine
303
+ - `lr_scheduler_kwargs`: {}
304
+ - `warmup_ratio`: 0.1
305
+ - `warmup_steps`: 0
306
+ - `log_level`: passive
307
+ - `log_level_replica`: warning
308
+ - `log_on_each_node`: True
309
+ - `logging_nan_inf_filter`: True
310
+ - `save_safetensors`: True
311
+ - `save_on_each_node`: False
312
+ - `save_only_model`: True
313
+ - `restore_callback_states_from_checkpoint`: False
314
+ - `no_cuda`: False
315
+ - `use_cpu`: False
316
+ - `use_mps_device`: False
317
+ - `seed`: 42
318
+ - `data_seed`: None
319
+ - `jit_mode_eval`: False
320
+ - `use_ipex`: False
321
+ - `bf16`: False
322
+ - `fp16`: True
323
+ - `fp16_opt_level`: O1
324
+ - `half_precision_backend`: auto
325
+ - `bf16_full_eval`: False
326
+ - `fp16_full_eval`: False
327
+ - `tf32`: None
328
+ - `local_rank`: 0
329
+ - `ddp_backend`: None
330
+ - `tpu_num_cores`: None
331
+ - `tpu_metrics_debug`: False
332
+ - `debug`: []
333
+ - `dataloader_drop_last`: False
334
+ - `dataloader_num_workers`: 0
335
+ - `dataloader_prefetch_factor`: None
336
+ - `past_index`: -1
337
+ - `disable_tqdm`: False
338
+ - `remove_unused_columns`: True
339
+ - `label_names`: None
340
+ - `load_best_model_at_end`: True
341
+ - `ignore_data_skip`: False
342
+ - `fsdp`: []
343
+ - `fsdp_min_num_params`: 0
344
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
345
+ - `fsdp_transformer_layer_cls_to_wrap`: None
346
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
347
+ - `deepspeed`: None
348
+ - `label_smoothing_factor`: 0.0
349
+ - `optim`: adamw_torch
350
+ - `optim_args`: None
351
+ - `adafactor`: False
352
+ - `group_by_length`: False
353
+ - `length_column_name`: length
354
+ - `ddp_find_unused_parameters`: None
355
+ - `ddp_bucket_cap_mb`: None
356
+ - `ddp_broadcast_buffers`: False
357
+ - `dataloader_pin_memory`: True
358
+ - `dataloader_persistent_workers`: False
359
+ - `skip_memory_metrics`: True
360
+ - `use_legacy_prediction_loop`: False
361
+ - `push_to_hub`: False
362
+ - `resume_from_checkpoint`: None
363
+ - `hub_model_id`: None
364
+ - `hub_strategy`: every_save
365
+ - `hub_private_repo`: False
366
+ - `hub_always_push`: False
367
+ - `gradient_checkpointing`: False
368
+ - `gradient_checkpointing_kwargs`: None
369
+ - `include_inputs_for_metrics`: False
370
+ - `eval_do_concat_batches`: True
371
+ - `fp16_backend`: auto
372
+ - `push_to_hub_model_id`: None
373
+ - `push_to_hub_organization`: None
374
+ - `mp_parameters`:
375
+ - `auto_find_batch_size`: False
376
+ - `full_determinism`: False
377
+ - `torchdynamo`: None
378
+ - `ray_scope`: last
379
+ - `ddp_timeout`: 1800
380
+ - `torch_compile`: False
381
+ - `torch_compile_backend`: None
382
+ - `torch_compile_mode`: None
383
+ - `dispatch_batches`: None
384
+ - `split_batches`: None
385
+ - `include_tokens_per_second`: False
386
+ - `include_num_input_tokens_seen`: False
387
+ - `neftune_noise_alpha`: None
388
+ - `optim_target_modules`: None
389
+ - `batch_eval_metrics`: False
390
+ - `batch_sampler`: no_duplicates
391
+ - `multi_dataset_batch_sampler`: proportional
392
+
393
+ </details>
394
+
395
+ ### Training Logs
396
+ | Epoch | Step | loss | sts-dev_spearman_cosine |
397
+ |:------:|:----:|:------:|:-----------------------:|
398
+ | 1.4109 | 50 | 2.1693 | 0.7897 |
399
+ | 2.8219 | 100 | 2.3041 | 0.8553 |
400
+ | 4.2328 | 150 | 2.4628 | 0.8737 |
401
+ | 5.6437 | 200 | 2.5485 | 0.8877 |
402
+ | 7.0547 | 250 | 2.4879 | 0.8945 |
403
+ | 8.4656 | 300 | 2.5508 | 0.8955 |
404
+ | 9.8765 | 350 | 2.5626 | 0.8959 |
405
+
406
+
407
+ ### Framework Versions
408
+ - Python: 3.10.12
409
+ - Sentence Transformers: 3.0.1
410
+ - Transformers: 4.41.2
411
+ - PyTorch: 2.1.2+cu121
412
+ - Accelerate: 0.31.0
413
+ - Datasets: 2.20.0
414
+ - Tokenizers: 0.19.1
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ #### CoSENTLoss
434
+ ```bibtex
435
+ @online{kexuefm-8847,
436
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
437
+ author={Su Jianlin},
438
+ year={2022},
439
+ month={Jan},
440
+ url={https://kexue.fm/archives/8847},
441
+ }
442
+ ```
443
+
444
+ <!--
445
+ ## Glossary
446
+
447
+ *Clearly define terms in order to be accessible across audiences.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Authors
452
+
453
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
454
+ -->
455
+
456
+ <!--
457
+ ## Model Card Contact
458
+
459
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
460
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56e52733ddac0a436d3da6e1e272355f39dec012eddc7b60adba53f4a713686
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }