sergeipetrov commited on
Commit
5fd0380
1 Parent(s): ce3a781

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: convnextv2-base-22k-384-finetuned
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # convnextv2-base-22k-384-finetuned
19
+
20
+ This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1532
23
+ - Accuracy: 0.9611
24
+ - F1: 0.9510
25
+ - Precision: 0.9714
26
+ - Recall: 0.9315
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.00015
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.1703 | 1.0 | 25 | 0.1399 | 0.9611 | 0.9510 | 0.9714 | 0.9315 |
59
+ | 0.0829 | 2.0 | 50 | 0.1470 | 0.9611 | 0.9510 | 0.9714 | 0.9315 |
60
+ | 0.0458 | 3.0 | 75 | 0.1532 | 0.9611 | 0.9510 | 0.9714 | 0.9315 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.28.1
66
+ - Pytorch 2.0.0
67
+ - Datasets 2.12.0
68
+ - Tokenizers 0.13.3