--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer model-index: - name: Qwen2.5-1.5B-Instruct-finetune-ru-news-lora results: [] --- # Qwen2.5-1.5B-Instruct-finetune-ru-news-lora This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5295 - Perplexity: 4.6645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 111 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Perplexity | |:-------------:|:-------:|:----:|:---------------:|:----------:| | No log | 0 | 0 | 1.7086 | 5.5805 | | 1.5638 | 1.0 | 75 | 1.6235 | 5.1242 | | 1.6127 | 2.0 | 150 | 1.5856 | 4.9323 | | 1.6656 | 3.0 | 225 | 1.5689 | 4.8497 | | 1.6207 | 4.0 | 300 | 1.5578 | 4.7967 | | 1.5559 | 5.0 | 375 | 1.5510 | 4.7642 | | 1.5766 | 6.0 | 450 | 1.5463 | 4.7420 | | 1.5744 | 7.0 | 525 | 1.5428 | 4.7257 | | 1.5892 | 8.0 | 600 | 1.5401 | 4.7129 | | 1.4133 | 9.0 | 675 | 1.5378 | 4.7022 | | 1.6007 | 10.0 | 750 | 1.5360 | 4.6939 | | 1.6776 | 11.0 | 825 | 1.5345 | 4.6872 | | 1.4363 | 12.0 | 900 | 1.5332 | 4.6814 | | 1.3633 | 13.0 | 975 | 1.5323 | 4.6771 | | 1.4944 | 14.0 | 1050 | 1.5314 | 4.6730 | | 1.4514 | 15.0 | 1125 | 1.5308 | 4.6703 | | 1.4892 | 16.0 | 1200 | 1.5303 | 4.6681 | | 1.3994 | 17.0 | 1275 | 1.5299 | 4.6664 | | 1.507 | 18.0 | 1350 | 1.5296 | 4.6651 | | 1.4906 | 19.0 | 1425 | 1.5295 | 4.6645 | | 1.4982 | 19.7383 | 1480 | 1.5295 | 4.6645 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0