sergioburdisso
commited on
Commit
•
4ad3403
1
Parent(s):
989112c
Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,30 @@
|
|
1 |
---
|
2 |
language: en
|
3 |
-
license:
|
4 |
library_name: sentence-transformers
|
5 |
tags:
|
6 |
- sentence-transformers
|
7 |
-
- feature-extraction
|
8 |
- sentence-similarity
|
9 |
-
-
|
10 |
datasets:
|
11 |
-
-
|
12 |
-
- flax-sentence-embeddings/stackexchange_xml
|
13 |
-
- ms_marco
|
14 |
-
- gooaq
|
15 |
-
- yahoo_answers_topics
|
16 |
-
- code_search_net
|
17 |
-
- search_qa
|
18 |
-
- eli5
|
19 |
-
- snli
|
20 |
-
- multi_nli
|
21 |
-
- wikihow
|
22 |
-
- natural_questions
|
23 |
-
- trivia_qa
|
24 |
-
- embedding-data/sentence-compression
|
25 |
-
- embedding-data/flickr30k-captions
|
26 |
-
- embedding-data/altlex
|
27 |
-
- embedding-data/simple-wiki
|
28 |
-
- embedding-data/QQP
|
29 |
-
- embedding-data/SPECTER
|
30 |
-
- embedding-data/PAQ_pairs
|
31 |
-
- embedding-data/WikiAnswers
|
32 |
pipeline_tag: sentence-similarity
|
|
|
|
|
33 |
---
|
34 |
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
## Usage (Sentence-Transformers)
|
|
|
40 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
41 |
|
42 |
```
|
@@ -44,22 +32,25 @@ pip install -U sentence-transformers
|
|
44 |
```
|
45 |
|
46 |
Then you can use the model like this:
|
|
|
47 |
```python
|
48 |
from sentence_transformers import SentenceTransformer
|
49 |
-
sentences = ["
|
50 |
|
51 |
-
model = SentenceTransformer('
|
52 |
embeddings = model.encode(sentences)
|
53 |
print(embeddings)
|
54 |
```
|
55 |
|
|
|
|
|
56 |
## Usage (HuggingFace Transformers)
|
57 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
58 |
|
59 |
```python
|
60 |
from transformers import AutoTokenizer, AutoModel
|
61 |
import torch
|
62 |
-
|
63 |
|
64 |
#Mean Pooling - Take attention mask into account for correct averaging
|
65 |
def mean_pooling(model_output, attention_mask):
|
@@ -69,11 +60,11 @@ def mean_pooling(model_output, attention_mask):
|
|
69 |
|
70 |
|
71 |
# Sentences we want sentence embeddings for
|
72 |
-
sentences = ['
|
73 |
|
74 |
# Load model from HuggingFace Hub
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
76 |
-
model = AutoModel.from_pretrained('
|
77 |
|
78 |
# Tokenize sentences
|
79 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -82,96 +73,84 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
|
|
82 |
with torch.no_grad():
|
83 |
model_output = model(**encoded_input)
|
84 |
|
85 |
-
# Perform pooling
|
86 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
87 |
|
88 |
-
# Normalize embeddings
|
89 |
-
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
90 |
-
|
91 |
print("Sentence embeddings:")
|
92 |
print(sentence_embeddings)
|
93 |
```
|
94 |
|
95 |
-
##
|
96 |
-
|
97 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
|
98 |
-
|
99 |
-
------
|
100 |
-
|
101 |
-
## Background
|
102 |
|
103 |
-
|
104 |
-
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
|
105 |
-
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
## Intended uses
|
113 |
-
|
114 |
-
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
|
115 |
-
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
116 |
-
|
117 |
-
By default, input text longer than 256 word pieces is truncated.
|
118 |
|
|
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
We then apply the cross entropy loss by comparing with true pairs.
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
|
134 |
-
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
135 |
-
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
146 |
-
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
147 |
-
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
148 |
-
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
149 |
-
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
150 |
-
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
151 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
152 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
|
153 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
|
154 |
-
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
155 |
-
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
156 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
157 |
-
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
158 |
-
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
159 |
-
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
160 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
161 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
162 |
-
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
163 |
-
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
164 |
-
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
165 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
166 |
-
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
167 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
168 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
169 |
-
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
170 |
-
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
171 |
-
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
172 |
-
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
173 |
-
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
174 |
-
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
175 |
-
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
176 |
-
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
177 |
-
| **Total** | | **1,170,060,424** |
|
|
|
1 |
---
|
2 |
language: en
|
3 |
+
license: mit
|
4 |
library_name: sentence-transformers
|
5 |
tags:
|
6 |
- sentence-transformers
|
|
|
7 |
- sentence-similarity
|
8 |
+
- task-oriented-dialogue
|
9 |
datasets:
|
10 |
+
- Salesforce/dialogstudio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
pipeline_tag: sentence-similarity
|
12 |
+
base_model:
|
13 |
+
- google-bert/bert-base-uncased
|
14 |
---
|
15 |
|
16 |
|
17 |
+
# Dialog2Flow single target (DSE-base)
|
18 |
+
|
19 |
+
This a variation of the **D2F$_{single}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
|
20 |
+
This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C).
|
21 |
+
|
22 |
+
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
|
23 |
+
|
24 |
+
<!--- Describe your model here -->
|
25 |
|
26 |
## Usage (Sentence-Transformers)
|
27 |
+
|
28 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
29 |
|
30 |
```
|
|
|
32 |
```
|
33 |
|
34 |
Then you can use the model like this:
|
35 |
+
|
36 |
```python
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
+
sentences = ["your phone please", "okay may i have your telephone number please"]
|
39 |
|
40 |
+
model = SentenceTransformer('sergioburdisso/dialog2flow-single-dse-base')
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
44 |
|
45 |
+
|
46 |
+
|
47 |
## Usage (HuggingFace Transformers)
|
48 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
49 |
|
50 |
```python
|
51 |
from transformers import AutoTokenizer, AutoModel
|
52 |
import torch
|
53 |
+
|
54 |
|
55 |
#Mean Pooling - Take attention mask into account for correct averaging
|
56 |
def mean_pooling(model_output, attention_mask):
|
|
|
60 |
|
61 |
|
62 |
# Sentences we want sentence embeddings for
|
63 |
+
sentences = ['your phone please', 'okay may i have your telephone number please']
|
64 |
|
65 |
# Load model from HuggingFace Hub
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-single-dse-base')
|
67 |
+
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-single-dse-base')
|
68 |
|
69 |
# Tokenize sentences
|
70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
73 |
with torch.no_grad():
|
74 |
model_output = model(**encoded_input)
|
75 |
|
76 |
+
# Perform pooling. In this case, mean pooling.
|
77 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
78 |
|
|
|
|
|
|
|
79 |
print("Sentence embeddings:")
|
80 |
print(sentence_embeddings)
|
81 |
```
|
82 |
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
**DataLoader**:
|
|
|
|
|
87 |
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
**Loss**:
|
94 |
|
95 |
+
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
|
96 |
|
97 |
+
**DataLoader**:
|
98 |
|
99 |
+
`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
|
100 |
+
```
|
101 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
102 |
+
```
|
103 |
|
104 |
+
**Loss**:
|
105 |
|
106 |
+
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
|
|
|
107 |
|
108 |
+
Parameters of the fit()-Method:
|
109 |
+
```
|
110 |
+
{
|
111 |
+
"epochs": 15,
|
112 |
+
"evaluation_steps": 164,
|
113 |
+
"evaluator": [
|
114 |
+
"spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
|
115 |
+
],
|
116 |
+
"max_grad_norm": 1,
|
117 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
118 |
+
"optimizer_params": {
|
119 |
+
"lr": 3e-06
|
120 |
+
},
|
121 |
+
"scheduler": "WarmupLinear",
|
122 |
+
"warmup_steps": 100,
|
123 |
+
"weight_decay": 0.01
|
124 |
+
}
|
125 |
+
```
|
126 |
|
|
|
|
|
|
|
127 |
|
128 |
+
## Full Model Architecture
|
129 |
+
```
|
130 |
+
SentenceTransformer(
|
131 |
+
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
|
132 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
133 |
+
)
|
134 |
+
```
|
135 |
|
136 |
+
## Citing & Authors
|
137 |
+
|
138 |
+
|
139 |
+
```bibtex
|
140 |
+
@inproceedings{burdisso-etal-2024-dialog2flow,
|
141 |
+
title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
|
142 |
+
author = "Burdisso, Sergio and
|
143 |
+
Madikeri, Srikanth and
|
144 |
+
Motlicek, Petr",
|
145 |
+
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
|
146 |
+
month = nov,
|
147 |
+
year = "2024",
|
148 |
+
address = "Miami",
|
149 |
+
publisher = "Association for Computational Linguistics",
|
150 |
+
}
|
151 |
+
```
|
152 |
|
153 |
+
## License
|
154 |
|
155 |
+
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
|
156 |
+
MIT License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|