File size: 2,387 Bytes
aea5502 50b3cc1 aea5502 50b3cc1 aea5502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: DeBERTaV3_model_multilabel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTaV3_model_multilabel
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0221
- Accuracy: 0.9919
- F1: 0.3922
- Precision: 0.6667
- Recall: 0.2778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 25 | 0.4442 | 0.9516 | 0.1475 | 0.0884 | 0.4444 |
| No log | 2.0 | 50 | 0.1757 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 3.0 | 75 | 0.0655 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 4.0 | 100 | 0.0378 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 5.0 | 125 | 0.0292 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 6.0 | 150 | 0.0255 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 7.0 | 175 | 0.0238 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 8.0 | 200 | 0.0227 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 9.0 | 225 | 0.0222 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
| No log | 10.0 | 250 | 0.0221 | 0.9919 | 0.3922 | 0.6667 | 0.2778 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|