File size: 7,216 Bytes
2d04683
1689ed7
 
2d04683
1689ed7
2d04683
 
c4857f6
1689ed7
 
9c4070d
1689ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d04683
 
59d4918
913ee03
3c99ba8
 
 
 
 
 
2d04683
 
 
3c99ba8
 
 
 
 
d80838d
50c48e2
 
8750329
 
50c48e2
913ee03
8c7a2aa
913ee03
 
d80838d
df86a74
 
3e2f078
df86a74
 
 
d46c2b6
 
df86a74
d46c2b6
 
df86a74
d80838d
 
df86a74
3e2f078
d80838d
 
df86a74
3c99ba8
2d04683
 
 
 
 
 
 
 
 
 
 
 
 
 
e59b2c8
 
 
 
 
2d04683
 
 
3e2f078
d46c2b6
 
 
 
 
 
3e2f078
 
 
 
 
 
d46c2b6
d80838d
2d04683
3f6f06e
1689ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
base_model:
- sethuiyer/SynthIQ-7b
- openchat/openchat-3.5-0106
pipeline_tag: text-generation
model-index:
- name: Chikuma_10.7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.7
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57.01
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 57.62
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
      name: Open LLM Leaderboard
---

## NOTE: For experimental purposes

<p align="center">
  <img src="https://huggingface.co/sethuiyer/Chikuma/resolve/main/chikuma.webp" height="256px" alt="Chikuma">
</p>


Chikuma is a 10.7B parameter model and is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [sethuiyer/SynthIQ-7b](https://huggingface.co/sethuiyer/SynthIQ-7b)
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)

The name "Chikuma" is inspired by the [Chikuma River](https://en.wikipedia.org/wiki/Shinano_River), the longest in Japan, known for its continuous flow and meandering path. 
This metaphorically represents the model's depth, fluidity, and adaptability in processing and understanding language.

It also perfectly fits the approach taken here - Depth Upscaling, inspired by SOLAR 10.7B.

## Nous LLM Evaluation (with ChatML Prompt Template)
| Model                      | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---------------------------|---------|----------|------------|-----------|---------|
| SynthIQ-7b               | 42.67   | 73.71    | 56.51      | **44.59**    | **54.37**   |
| openchat/openchat-3.5-0106 | **44.17**   | **73.72**    | 52.53      | 44.4     | 53.71   |
| Chikuma_10.7B            | 42.41   | 73.41    | **56.69**      | 43.5     | 54      |

More details can be found [here](https://gist.github.com/sethuiyer/08b4498ed13a6dead38ad3a6f12e349a)


### Recommended Prompt Template (Experimental)

```text
<|im_start|>GPT4 Correct system
You are Chikuma, a constantly learning AI assistant who strives to be
insightful, engaging, and helpful. You possess vast knowledge and creativity,
but also a humble curiosity about the world and the people you interact
with. If you don't know the answer to a question, please don't share false information. 
Always use <|end_of_turn|> when you want to end the answer.<|im_end|>
<|im_start|>GPT4 Correct User:
{{Input}}
<|im_end|>GPT4 Correct Assistant:
```

ChatML also works, but make sure to add the sentence "Always use <|end_of_turn|> when you want to end the answer" as the default eos token is <|end_of_turn|>.

## Tested to work well in :
1. [text-generation-webui](https://github.com/oobabooga/text-generation-webui), LLaMa-Precise sampling settings.
2. `transformers` text generation pipeline, temperature=4.0, top_k=50, top_p=0.01.


## 🧩 Configuration

```yaml
slices:
  - sources:
    - model: sethuiyer/SynthIQ-7b
      layer_range: [0, 24]
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```

## Ollama:
Chikuma is on Ollama. You can use it by running the command ```ollama run stuehieyr/chikuma``` in your 
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on 
a Google Colab backend.

## 💻 Usage

```python
sys_message = ''' 
You are Chikuma, a constantly learning AI assistant who strives to be
insightful, engaging, and helpful. You possess vast knowledge and creativity,
but also a humble curiosity about the world and the people you interact
with. If you don't know the answer to a question, please don't share false information. 
Always use <|end_of_turn|> when you want to end the answer.
'''

question = '''
Tell me what is a large language model in under 250 words.
'''

messages = [{"role":"system", "content": sys_message}, {"role": "user", "content": question}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=4.0, top_k=50, top_p=0.01)
print(outputs[0]["generated_text"])
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Chikuma_10.7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.17|
|AI2 Reasoning Challenge (25-Shot)|65.70|
|HellaSwag (10-Shot)              |84.31|
|MMLU (5-Shot)                    |64.81|
|TruthfulQA (0-shot)              |57.01|
|Winogrande (5-shot)              |79.56|
|GSM8k (5-shot)                   |57.62|