File size: 8,283 Bytes
ea11770
ebca4b9
 
 
ea11770
 
 
 
 
a96a770
ea11770
 
 
 
43e6758
ebca4b9
 
a96a770
ebca4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea11770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac9203
 
 
 
 
 
 
 
 
 
 
 
b1a643e
 
ae7bb06
 
 
 
 
 
 
 
eda3bef
 
 
 
7dbdaab
 
 
 
 
 
b1a643e
e9efe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dbdaab
b1a643e
7dbdaab
 
 
b1a643e
 
 
 
 
 
 
 
 
7dbdaab
b1a643e
 
 
 
 
 
 
 
7dbdaab
ebca4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
language:
- en
- zh
license: llama2
library_name: transformers
tags:
- llama
- merge
- medical
datasets:
- GBaker/MedQA-USMLE-4-options
- cognitivecomputations/samantha-data
- shibing624/medical
base_model:
- Severus27/BeingWell_llama2_7b
- ParthasarathyShanmugam/llama-2-7b-samantha
pipeline_tag: text-generation
model-index:
- name: Dr_Samantha-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 53.84
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 77.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.58
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 18.8
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha-7b
      name: Open LLM Leaderboard
---

# Dr. Samantha

<p align="center">
  <img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ">
</p>

## Overview

Dr. Samantha is a language model made by merging `Severus27/BeingWell_llama2_7b` and `ParthasarathyShanmugam/llama-2-7b-samantha` using [mergekit](https://github.com/cg123/mergekit).

Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model. 

As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care.


# Yaml Config

```yaml

slices:
  - sources:
      - model: Severus27/BeingWell_llama2_7b
        layer_range: [0, 32]
      - model: ParthasarathyShanmugam/llama-2-7b-samantha
        layer_range: [0, 32]

merge_method: slerp
base_model: TinyPixel/Llama-2-7B-bf16-sharded

parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
tokenizer_source: union

dtype: bfloat16

```

## Prompt Template

```text
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
What is your name?

### Response:
My name is Samantha.
```

## ⚡ Quantized models

* **GGUF**:https://huggingface.co/TheBloke/Dr_Samantha-7B-GGUF
* **GPTQ**: https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ
* **AWQ**: https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ

Thanks to [TheBloke](https://huggingface.co/TheBloke) for making this available! 

Dr.Samantha is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/dr_samantha``` in your 
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on 
a Google Colab backend.

## OpenLLM Leaderboard Performance
| T | Model                            | Average | ARC   | Hellaswag | MMLU  | TruthfulQA | Winogrande | GSM8K |
|---|----------------------------------|---------|-------|-----------|-------|------------|------------|-------|
| 1 | sethuiyer/Dr_Samantha-7b         | 52.95   | 53.84 | 77.95     | 47.94 | 45.58      | 73.56      | 18.8  |
| 2 | togethercomputer/LLaMA-2-7B-32K-Instruct | 50.02   | 51.11 | 78.51     | 46.11 | 44.86      | 73.88      | 5.69  |
| 3 | togethercomputer/LLaMA-2-7B-32K  | 47.07   | 47.53 | 76.14     | 43.33 | 39.23      | 71.9       | 4.32  |


## Subject-wise Accuracy

| Subject               | Accuracy (%) |
|-----------------------|--------------|
| Clinical Knowledge    | 52.83        |
| Medical Genetics      | 49.00        |
| Human Aging           | 58.29        |
| Human Sexuality       | 55.73        |
| College Medicine      | 38.73        |
| Anatomy               | 41.48        |
| College Biology       | 52.08        |
| College Medicine      | 38.73        |
| High School Biology   | 53.23        |
| Professional Medicine | 38.73        |
| Nutrition             | 50.33        |
| Professional Psychology | 46.57      |
| Virology              | 41.57        |
| High School Psychology | 66.60       |
| Average                | 48.85%      |


## Evaluation by GPT-4 across 25 random prompts from ChatDoctor-200k Dataset

### Overall Rating: 83.5/100

#### Pros:

- Demonstrates extensive medical knowledge through accurate identification of potential causes for various symptoms.
- Responses consistently emphasize the importance of seeking professional diagnoses and treatments.
- Advice to consult specialists for certain concerns is well-reasoned.
- Practical interim measures provided for symptom management in several cases.
- Consistent display of empathy, support, and reassurance for patients' well-being.
- Clear and understandable explanations of conditions and treatment options.
- Prompt responses addressing all aspects of medical inquiries.

#### Cons:

- Could occasionally place stronger emphasis on urgency when symptoms indicate potential emergencies.
- Discussion of differential diagnoses could explore a broader range of less common causes.
- Details around less common symptoms and their implications need more depth at times.
- Opportunities exist to gather clarifying details on symptom histories through follow-up questions.
- Consider exploring full medical histories to improve diagnostic context where relevant.
- Caution levels and risk factors associated with certain conditions could be underscored more.



# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |52.95|
|AI2 Reasoning Challenge (25-Shot)|53.84|
|HellaSwag (10-Shot)              |77.95|
|MMLU (5-Shot)                    |47.94|
|TruthfulQA (0-shot)              |45.58|
|Winogrande (5-shot)              |73.56|
|GSM8k (5-shot)                   |18.80|