Update README.md
Browse files
README.md
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
---
|
2 |
-
|
3 |
base_model:
|
4 |
-
|
5 |
-
- bunnycore/Qwen2.5-7B-Matrix
|
6 |
-
- bunnycore/Qwen2.5-7B-HyperMix
|
7 |
library_name: transformers
|
8 |
tags:
|
9 |
-
|
10 |
-
|
11 |
-
- reasoning
|
12 |
-
- qwen
|
13 |
license: apache-2.0
|
14 |
language:
|
15 |
-
|
16 |
pipeline_tag: text-generation
|
17 |
model-index:
|
18 |
- name: Qwen2.5-7B-Anvita
|
@@ -30,7 +25,8 @@ model-index:
|
|
30 |
value: 64.33
|
31 |
name: strict accuracy
|
32 |
source:
|
33 |
-
url:
|
|
|
34 |
name: Open LLM Leaderboard
|
35 |
- task:
|
36 |
type: text-generation
|
@@ -45,7 +41,8 @@ model-index:
|
|
45 |
value: 35.48
|
46 |
name: normalized accuracy
|
47 |
source:
|
48 |
-
url:
|
|
|
49 |
name: Open LLM Leaderboard
|
50 |
- task:
|
51 |
type: text-generation
|
@@ -60,7 +57,8 @@ model-index:
|
|
60 |
value: 15.86
|
61 |
name: exact match
|
62 |
source:
|
63 |
-
url:
|
|
|
64 |
name: Open LLM Leaderboard
|
65 |
- task:
|
66 |
type: text-generation
|
@@ -75,7 +73,8 @@ model-index:
|
|
75 |
value: 10.29
|
76 |
name: acc_norm
|
77 |
source:
|
78 |
-
url:
|
|
|
79 |
name: Open LLM Leaderboard
|
80 |
- task:
|
81 |
type: text-generation
|
@@ -90,7 +89,8 @@ model-index:
|
|
90 |
value: 13.47
|
91 |
name: acc_norm
|
92 |
source:
|
93 |
-
url:
|
|
|
94 |
name: Open LLM Leaderboard
|
95 |
- task:
|
96 |
type: text-generation
|
@@ -107,26 +107,11 @@ model-index:
|
|
107 |
value: 35.17
|
108 |
name: accuracy
|
109 |
source:
|
110 |
-
url:
|
|
|
111 |
name: Open LLM Leaderboard
|
112 |
-
|
113 |
---
|
114 |
|
115 |
-
# **Qwen 2.5-7B Anvita**
|
116 |
-
|
117 |
-
<img src="./logo.webp" alt="Logo" height="256px" width="256px" />
|
118 |
-
|
119 |
-
## Overview
|
120 |
-
|
121 |
-
**Anvita** is a reasoning-oriented AI model designed to **connect ideas** and **understand complex inputs**. Derived from the Sanskrit word meaning "connected" or "understood," Anvita embodies intellectual depth and comprehension, making it an ideal choice for tasks requiring nuanced understanding and sophisticated reasoning.
|
122 |
-
|
123 |
-
Built using the **DARE TIES** merge method, Anvita integrates multiple pre-trained language models, including:
|
124 |
-
|
125 |
-
- **Qwen2.5-7B-HyperMix**
|
126 |
-
- **bunnycore/Qwen2.5-7B-Matrix**
|
127 |
-
- **happzy2633/qwen2.5-7b-ins-v3**
|
128 |
-
|
129 |
-
This combination optimizes Anvita for superior reasoning, dynamic conversations, and high-quality text generation.
|
130 |
|
131 |
## Evaluation Results
|
132 |
| **Metric** | **Value** |
|
@@ -141,85 +126,3 @@ This combination optimizes Anvita for superior reasoning, dynamic conversations,
|
|
141 |
|
142 |
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/sethuiyer/Qwen2.5-7B-Anvita/results_2024-10-27T11-40-06.834908.json).
|
143 |
Personal Benchmarks - check [PERSONAL_BENCHMARK.md](./PERSONAL_BENCHMARK.md)
|
144 |
-
|
145 |
-
For optimal reasoning performance, it is recommended to use **BF16** precision and the [Entropic Chain of Thought](https://huggingface.co/sethuiyer/Qwen2.5-7B-Anvita/blob/main/entropic_cot.py) decoding method. This experimental decoder combines entropy and CoT decoding to enhance output quality.
|
146 |
-
|
147 |
-
## Features
|
148 |
-
|
149 |
-
- **Enhanced Reasoning:** Optimized for multi-step reasoning across various domains.
|
150 |
-
- **Long Sequence Handling:** Capable of processing extended inputs without loss of context.
|
151 |
-
- **Conversational Fluency:** Engages in fluid, context-aware dialogues.
|
152 |
-
- **Dense Knowledge Integration:** Combines knowledge from multiple base models for comprehensive understanding.
|
153 |
-
|
154 |
-
## Installation
|
155 |
-
|
156 |
-
To get started with Anvita, ensure you have the necessary dependencies installed. You can use the [Transformers](https://huggingface.co/docs/transformers/index) library for seamless integration.
|
157 |
-
|
158 |
-
```bash
|
159 |
-
pip install transformers rich
|
160 |
-
```
|
161 |
-
|
162 |
-
## Quick Start
|
163 |
-
|
164 |
-
Here's a simple example to demonstrate how to use Anvita for generating responses with enhanced reasoning capabilities.
|
165 |
-
|
166 |
-
```python
|
167 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
168 |
-
from rich.console import Console
|
169 |
-
from rich.markdown import Markdown
|
170 |
-
|
171 |
-
# Initialize console
|
172 |
-
console = Console()
|
173 |
-
|
174 |
-
# Load the tokenizer and model from the specified path
|
175 |
-
MODEL_PATH = "sethuiyer/Qwen2.5-7B-Anvita"
|
176 |
-
|
177 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
178 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to("cuda")
|
179 |
-
|
180 |
-
QUESTION = "Is 9.11 greater than 9.8?"
|
181 |
-
|
182 |
-
messages = [
|
183 |
-
{"role": "user", "content": QUESTION}
|
184 |
-
]
|
185 |
-
|
186 |
-
# Generate the answer using Entropic Chain of Thought decoding
|
187 |
-
answer, score = cot_decode_speculative(model, tokenizer, messages, k=2, max_new_tokens=2058)
|
188 |
-
|
189 |
-
# Format the answer as markdown
|
190 |
-
markdown_answer = f"""
|
191 |
-
# **Answer:**
|
192 |
-
{answer}
|
193 |
-
|
194 |
-
**Score:** {score}
|
195 |
-
"""
|
196 |
-
|
197 |
-
# Display the answer in markdown format
|
198 |
-
console.print(Markdown(markdown_answer))
|
199 |
-
```
|
200 |
-
|
201 |
-
## Configuration
|
202 |
-
|
203 |
-
The following YAML configuration was used to produce Anvita:
|
204 |
-
|
205 |
-
```yaml
|
206 |
-
slices:
|
207 |
-
models:
|
208 |
-
- model: bunnycore/Qwen2.5-7B-Matrix
|
209 |
-
parameters:
|
210 |
-
weight: [0.25, 0.35, 0.45, 0.35, 0.25]
|
211 |
-
density: [0.1, 0.25, 0.5, 0.25, 0.1]
|
212 |
-
- model: bunnycore/Qwen2.5-7B-HyperMix
|
213 |
-
- model: happzy2633/qwen2.5-7b-ins-v3
|
214 |
-
parameters:
|
215 |
-
weight: [0.55, 0.45, 0.35, 0.45, 0.55]
|
216 |
-
density: [0.1, 0.25, 0.5, 0.25, 0.1]
|
217 |
-
merge_method: dare_ties
|
218 |
-
base_model: bunnycore/Qwen2.5-7B-HyperMix
|
219 |
-
parameters:
|
220 |
-
int8_mask: true
|
221 |
-
dtype: bfloat16
|
222 |
-
```
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
1 |
---
|
|
|
2 |
base_model:
|
3 |
+
- Qwen/Qwen2.5-7B-Instruct
|
|
|
|
|
4 |
library_name: transformers
|
5 |
tags:
|
6 |
+
- reasoning
|
7 |
+
- qwen
|
|
|
|
|
8 |
license: apache-2.0
|
9 |
language:
|
10 |
+
- en
|
11 |
pipeline_tag: text-generation
|
12 |
model-index:
|
13 |
- name: Qwen2.5-7B-Anvita
|
|
|
25 |
value: 64.33
|
26 |
name: strict accuracy
|
27 |
source:
|
28 |
+
url: >-
|
29 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
30 |
name: Open LLM Leaderboard
|
31 |
- task:
|
32 |
type: text-generation
|
|
|
41 |
value: 35.48
|
42 |
name: normalized accuracy
|
43 |
source:
|
44 |
+
url: >-
|
45 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
46 |
name: Open LLM Leaderboard
|
47 |
- task:
|
48 |
type: text-generation
|
|
|
57 |
value: 15.86
|
58 |
name: exact match
|
59 |
source:
|
60 |
+
url: >-
|
61 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
62 |
name: Open LLM Leaderboard
|
63 |
- task:
|
64 |
type: text-generation
|
|
|
73 |
value: 10.29
|
74 |
name: acc_norm
|
75 |
source:
|
76 |
+
url: >-
|
77 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
78 |
name: Open LLM Leaderboard
|
79 |
- task:
|
80 |
type: text-generation
|
|
|
89 |
value: 13.47
|
90 |
name: acc_norm
|
91 |
source:
|
92 |
+
url: >-
|
93 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
94 |
name: Open LLM Leaderboard
|
95 |
- task:
|
96 |
type: text-generation
|
|
|
107 |
value: 35.17
|
108 |
name: accuracy
|
109 |
source:
|
110 |
+
url: >-
|
111 |
+
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Qwen2.5-7B-Anvita
|
112 |
name: Open LLM Leaderboard
|
|
|
113 |
---
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
## Evaluation Results
|
117 |
| **Metric** | **Value** |
|
|
|
126 |
|
127 |
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/sethuiyer/Qwen2.5-7B-Anvita/results_2024-10-27T11-40-06.834908.json).
|
128 |
Personal Benchmarks - check [PERSONAL_BENCHMARK.md](./PERSONAL_BENCHMARK.md)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|